© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8a10
L8a10
L8a12
L8a12
L8a11
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L8a11

Visit L8a11's page at Knotilus!

Acknowledgement

L8a11 as Morse Link
DrawMorseLink

PD Presentation: X8192 X2,9,3,10 X10,3,11,4 X14,5,15,6 X16,11,7,12 X12,15,13,16 X6718 X4,13,5,14

Gauss Code: {{1, -2, 3, -8, 4, -7}, {7, -1, 2, -3, 5, -6, 8, -4, 6, -5}}

Jones Polynomial: - q-21/2 + 2q-19/2 - 3q-17/2 + 4q-15/2 - 4q-13/2 + 3q-11/2 - 3q-9/2 + q-7/2 - q-5/2

A2 (sl(3)) Invariant: q-32 - q-24 + q-22 + 2q-18 + 2q-16 + q-14 + 2q-12 + q-8

HOMFLY-PT Polynomial: - a5z-1 - 4a5z - 4a5z3 - a5z5 + a7z-1 - a7z - 3a7z3 - a7z5 + 2a9z + a9z3

Kauffman Polynomial: a5z-1 - 4a5z + 4a5z3 - a5z5 - a6 + a6z2 + 2a6z4 - a6z6 + a7z-1 - a7z + 2a7z5 - a7z7 - 4a8z2 + 7a8z4 - 3a8z6 + 2a9z - 2a9z3 + a9z5 - a9z7 - 3a10z2 + 3a10z4 - 2a10z6 + a11z3 - 2a11z5 + 2a12z2 - 2a12z4 + a13z - a13z3

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4        1
j = -6       11
j = -8      2  
j = -10     11  
j = -12    32   
j = -14   11    
j = -16  23     
j = -18 12      
j = -20 1       
j = -221        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[8, Alternating, 11]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, Alternating, 11]]
Out[4]=   
PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[14, 5, 15, 6], 
 
>   X[16, 11, 7, 12], X[12, 15, 13, 16], X[6, 7, 1, 8], X[4, 13, 5, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -8, 4, -7}, {7, -1, 2, -3, 5, -6, 8, -4, 6, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(21/2)     2       3       4       4       3      3      -(7/2)    -(5/2)
-q        + ----- - ----- + ----- - ----- + ----- - ---- + q       - q
             19/2    17/2    15/2    13/2    11/2    9/2
            q       q       q       q       q       q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -32    -24    -22    2     2     -14    2     -8
q    - q    + q    + --- + --- + q    + --- + q
                      18    16           12
                     q     q            q
In[8]:=
HOMFLYPT[Link[8, Alternating, 11]][a, z]
Out[8]=   
   5     7
  a     a       5      7        9        5  3      7  3    9  3    5  5    7  5
-(--) + -- - 4 a  z - a  z + 2 a  z - 4 a  z  - 3 a  z  + a  z  - a  z  - a  z
  z     z
In[9]:=
Kauffman[Link[8, Alternating, 11]][a, z]
Out[9]=   
       5    7
  6   a    a       5      7        9      13      6  2      8  2      10  2
-a  + -- + -- - 4 a  z - a  z + 2 a  z + a   z + a  z  - 4 a  z  - 3 a   z  + 
      z    z
 
       12  2      5  3      9  3    11  3    13  3      6  4      8  4
>   2 a   z  + 4 a  z  - 2 a  z  + a   z  - a   z  + 2 a  z  + 7 a  z  + 
 
       10  4      12  4    5  5      7  5    9  5      11  5    6  6
>   3 a   z  - 2 a   z  - a  z  + 2 a  z  + a  z  - 2 a   z  - a  z  - 
 
       8  6      10  6    7  7    9  7
>   3 a  z  - 2 a   z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4     1        1        1        2        2        3        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             22  8    20  7    18  7    18  6    16  6    16  5    14  5
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1        3        2        1        1        2      1
>   ------ + ------ + ------ + ------ + ------ + ----- + ----
     14  4    12  4    12  3    10  3    10  2    8  2    6
    q   t    q   t    q   t    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8a11
L8a10
L8a10
L8a12
L8a12