© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8a11
L8a11
L8a13
L8a13
L8a12
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L8a12

Visit L8a12's page at Knotilus!

Acknowledgement

L8a12 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X16,7,9,8 X12,3,13,4 X14,5,15,6 X4,13,5,14 X6,15,7,16 X2,9,3,10 X8,11,1,12

Gauss Code: {{1, -7, 3, -5, 4, -6, 2, -8}, {7, -1, 8, -3, 5, -4, 6, -2}}

Jones Polynomial: - q-21/2 + q-19/2 - 2q-17/2 + 3q-15/2 - 3q-13/2 + 2q-11/2 - 2q-9/2 + q-7/2 - q-5/2

A2 (sl(3)) Invariant: q-32 + q-30 + q-28 + q-26 + q-22 + q-18 + q-16 + q-12 + q-8

HOMFLY-PT Polynomial: - 3a5z - 4a5z3 - a5z5 - a7z-1 - 4a7z - 4a7z3 - a7z5 + a9z-1 + 3a9z + a9z3

Kauffman Polynomial: - 3a5z + 4a5z3 - a5z5 - a6z2 + 3a6z4 - a6z6 - a7z-1 + 5a7z - 6a7z3 + 4a7z5 - a7z7 + a8 - 5a8z2 + 6a8z4 - 2a8z6 - a9z-1 + 5a9z - 8a9z3 + 4a9z5 - a9z7 - 3a10z2 + 2a10z4 - a10z6 - a11z + a11z3 - a11z5 + a12z2 - a12z4 + 2a13z - a13z3

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4        1
j = -6       11
j = -8      1  
j = -10     11  
j = -12    21   
j = -14   11    
j = -16  12     
j = -18  1      
j = -2011       
j = -221        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[8, Alternating, 12]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, Alternating, 12]]
Out[4]=   
PD[X[10, 1, 11, 2], X[16, 7, 9, 8], X[12, 3, 13, 4], X[14, 5, 15, 6], 
 
>   X[4, 13, 5, 14], X[6, 15, 7, 16], X[2, 9, 3, 10], X[8, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -7, 3, -5, 4, -6, 2, -8}, {7, -1, 8, -3, 5, -4, 6, -2}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(21/2)    -(19/2)     2       3       3       2      2      -(7/2)    -(5/2)
-q        + q        - ----- + ----- - ----- + ----- - ---- + q       - q
                        17/2    15/2    13/2    11/2    9/2
                       q       q       q       q       q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -32    -30    -28    -26    -22    -18    -16    -12    -8
q    + q    + q    + q    + q    + q    + q    + q    + q
In[8]:=
HOMFLYPT[Link[8, Alternating, 12]][a, z]
Out[8]=   
   7     9
  a     a       5        7        9        5  3      7  3    9  3    5  5
-(--) + -- - 3 a  z - 4 a  z + 3 a  z - 4 a  z  - 4 a  z  + a  z  - a  z  - 
  z     z
 
     7  5
>   a  z
In[9]:=
Kauffman[Link[8, Alternating, 12]][a, z]
Out[9]=   
      7    9
 8   a    a       5        7        9      11        13      6  2      8  2
a  - -- - -- - 3 a  z + 5 a  z + 5 a  z - a   z + 2 a   z - a  z  - 5 a  z  - 
     z    z
 
       10  2    12  2      5  3      7  3      9  3    11  3    13  3
>   3 a   z  + a   z  + 4 a  z  - 6 a  z  - 8 a  z  + a   z  - a   z  + 
 
       6  4      8  4      10  4    12  4    5  5      7  5      9  5
>   3 a  z  + 6 a  z  + 2 a   z  - a   z  - a  z  + 4 a  z  + 4 a  z  - 
 
     11  5    6  6      8  6    10  6    7  7    9  7
>   a   z  - a  z  - 2 a  z  - a   z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4     1        1        1        1        1        2        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             22  8    20  8    20  7    18  6    16  6    16  5    14  5
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1        2        1        1        1        1      1
>   ------ + ------ + ------ + ------ + ------ + ----- + ----
     14  4    12  4    12  3    10  3    10  2    8  2    6
    q   t    q   t    q   t    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8a12
L8a11
L8a11
L8a13
L8a13