© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8a9
L8a9
L8a11
L8a11
L8a10
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L8a10

Visit L8a10's page at Knotilus!

Acknowledgement

L8a10 as Morse Link
DrawMorseLink

PD Presentation: X8192 X10,3,11,4 X12,15,13,16 X14,5,15,6 X4,13,5,14 X16,11,7,12 X2738 X6,9,1,10

Gauss Code: {{1, -7, 2, -5, 4, -8}, {7, -1, 8, -2, 6, -3, 5, -4, 3, -6}}

Jones Polynomial: - q-19/2 + 2q-17/2 - 3q-15/2 + 4q-13/2 - 5q-11/2 + 4q-9/2 - 4q-7/2 + 2q-5/2 - q-3/2

A2 (sl(3)) Invariant: q-30 - q-26 + q-24 + q-20 + 2q-18 + q-16 + 2q-14 + q-10 + q-8 - q-6 + q-4

HOMFLY-PT Polynomial: - a3z - a3z3 - a5z-1 - 3a5z - 2a5z3 + a7z-1 - a7z3 + a9z

Kauffman Polynomial: a3z - a3z3 + a4z2 - 2a4z4 + a5z-1 - 4a5z + 4a5z3 - 3a5z5 - a6 + 2a6z2 - 2a6z6 + a7z-1 - 4a7z + 6a7z3 - 2a7z5 - a7z7 - 3a8z2 + 8a8z4 - 4a8z6 - a9z + 4a9z3 - a9z7 - 4a10z2 + 6a10z4 - 2a10z6 - 2a11z + 3a11z3 - a11z5

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2        1
j = -4       21
j = -6      2  
j = -8     22  
j = -10    32   
j = -12   12    
j = -14  23     
j = -16 12      
j = -18 1       
j = -201        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[8, Alternating, 10]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, Alternating, 10]]
Out[4]=   
PD[X[8, 1, 9, 2], X[10, 3, 11, 4], X[12, 15, 13, 16], X[14, 5, 15, 6], 
 
>   X[4, 13, 5, 14], X[16, 11, 7, 12], X[2, 7, 3, 8], X[6, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -7, 2, -5, 4, -8}, {7, -1, 8, -2, 6, -3, 5, -4, 3, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(19/2)     2       3       4       5      4      4      2      -(3/2)
-q        + ----- - ----- + ----- - ----- + ---- - ---- + ---- - q
             17/2    15/2    13/2    11/2    9/2    7/2    5/2
            q       q       q       q       q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -30    -26    -24    -20    2     -16    2     -10    -8    -6    -4
q    - q    + q    + q    + --- + q    + --- + q    + q   - q   + q
                             18           14
                            q            q
In[8]:=
HOMFLYPT[Link[8, Alternating, 10]][a, z]
Out[8]=   
   5     7
  a     a     3        5      9      3  3      5  3    7  3
-(--) + -- - a  z - 3 a  z + a  z - a  z  - 2 a  z  - a  z
  z     z
In[9]:=
Kauffman[Link[8, Alternating, 10]][a, z]
Out[9]=   
       5    7
  6   a    a     3        5        7      9        11      4  2      6  2
-a  + -- + -- + a  z - 4 a  z - 4 a  z - a  z - 2 a   z + a  z  + 2 a  z  - 
      z    z
 
       8  2      10  2    3  3      5  3      7  3      9  3      11  3
>   3 a  z  - 4 a   z  - a  z  + 4 a  z  + 6 a  z  + 4 a  z  + 3 a   z  - 
 
       4  4      8  4      10  4      5  5      7  5    11  5      6  6
>   2 a  z  + 8 a  z  + 6 a   z  - 3 a  z  - 2 a  z  - a   z  - 2 a  z  - 
 
       8  6      10  6    7  7    9  7
>   4 a  z  - 2 a   z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4    -2     1        1        1        2        2        3        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             20  8    18  7    16  7    16  6    14  6    14  5    12  5
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        3        2        2       2       2      2
>   ------ + ------ + ------ + ----- + ----- + ----- + ----
     12  4    10  4    10  3    8  3    8  2    6  2    4
    q   t    q   t    q   t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8a10
L8a9
L8a9
L8a11
L8a11