© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8a8
L8a8
L8a10
L8a10
L8a9
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L8a9

Visit L8a9's page at Knotilus!

Acknowledgement

L8a9 as Morse Link
DrawMorseLink

PD Presentation: X8192 X10,4,11,3 X16,10,7,9 X2738 X4,16,5,15 X12,5,13,6 X14,11,15,12 X6,13,1,14

Gauss Code: {{1, -4, 2, -5, 6, -8}, {4, -1, 3, -2, 7, -6, 8, -7, 5, -3}}

Jones Polynomial: q-11/2 - 3q-9/2 + 4q-7/2 - 6q-5/2 + 6q-3/2 - 6q-1/2 + 4q1/2 - 3q3/2 + q5/2

A2 (sl(3)) Invariant: - q-18 + 2q-14 + 2q-10 + q-8 + 2q-4 + 3 + q6 - q8

HOMFLY-PT Polynomial: a-1z + a-1z3 - az-1 - 4az - 3az3 - az5 + a3z-1 + 3a3z + 2a3z3 - a5z

Kauffman Polynomial: a-2z2 - a-2z4 - 2a-1z + 5a-1z3 - 3a-1z5 + 3z4 - 3z6 + az-1 - 7az + 13az3 - 6az5 - az7 - a2 - 2a2z2 + 8a2z4 - 6a2z6 + a3z-1 - 7a3z + 13a3z3 - 6a3z5 - a3z7 + 3a4z4 - 3a4z6 - 2a5z + 5a5z3 - 3a5z5 + a6z2 - a6z4

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 6        1
j = 4       2 
j = 2      21 
j = 0     42  
j = -2    33   
j = -4   33    
j = -6  24     
j = -8 12      
j = -10 2       
j = -121        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[8, Alternating, 9]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, Alternating, 9]]
Out[4]=   
PD[X[8, 1, 9, 2], X[10, 4, 11, 3], X[16, 10, 7, 9], X[2, 7, 3, 8], 
 
>   X[4, 16, 5, 15], X[12, 5, 13, 6], X[14, 11, 15, 12], X[6, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 2, -5, 6, -8}, {4, -1, 3, -2, 7, -6, 8, -7, 5, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(11/2)    3      4      6      6        6                     3/2    5/2
q        - ---- + ---- - ---- + ---- - ------- + 4 Sqrt[q] - 3 q    + q
            9/2    7/2    5/2    3/2   Sqrt[q]
           q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -18    2     2     -8   2     6    8
3 - q    + --- + --- + q   + -- + q  - q
            14    10          4
           q     q           q
In[8]:=
HOMFLYPT[Link[8, Alternating, 9]][a, z]
Out[8]=   
        3                                3
  a    a    z              3      5     z         3      3  3      5
-(-) + -- + - - 4 a z + 3 a  z - a  z + -- - 3 a z  + 2 a  z  - a z
  z    z    a                           a
In[9]:=
Kauffman[Link[8, Alternating, 9]][a, z]
Out[9]=   
           3                                    2                        3
  2   a   a    2 z              3        5     z       2  2    6  2   5 z
-a  + - + -- - --- - 7 a z - 7 a  z - 2 a  z + -- - 2 a  z  + a  z  + ---- + 
      z   z     a                               2                      a
                                               a
 
                                           4
          3       3  3      5  3      4   z       2  4      4  4    6  4
>   13 a z  + 13 a  z  + 5 a  z  + 3 z  - -- + 8 a  z  + 3 a  z  - a  z  - 
                                           2
                                          a
 
       5
    3 z         5      3  5      5  5      6      2  6      4  6      7    3  7
>   ---- - 6 a z  - 6 a  z  - 3 a  z  - 3 z  - 6 a  z  - 3 a  z  - a z  - a  z
     a
In[10]:=
Kh[L][q, t]
Out[10]=   
    3      1        2        1       2       2       4       3      3
4 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 
     2    12  5    10  4    8  4    8  3    6  3    6  2    4  2    4
    q    q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
     3              2      2  2      4  2    6  3
>   ---- + 2 t + 2 q  t + q  t  + 2 q  t  + q  t
     2
    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8a9
L8a8
L8a8
L8a10
L8a10