© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L6n1
L6n1
L7a2
L7a2
L7a1
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L7a1

Visit L7a1's page at Knotilus!

Acknowledgement

L7a1 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,7,13,8 X4,13,1,14 X10,6,11,5 X8493 X14,10,5,9 X2,12,3,11

Gauss Code: {{1, -7, 5, -3}, {4, -1, 2, -5, 6, -4, 7, -2, 3, -6}}

Jones Polynomial: q-5/2 - 3q-3/2 + 3q-1/2 - 5q1/2 + 4q3/2 - 4q5/2 + 3q7/2 - q9/2

A2 (sl(3)) Invariant: - q-8 + q-6 + q-4 + 2q-2 + 4 + q2 + 2q4 - q6 - q12 + q14

HOMFLY-PT Polynomial: - a-3z - a-3z3 - a-1z-1 + 2a-1z + 3a-1z3 + a-1z5 + az-1 - az - az3

Kauffman Polynomial: - a-5z3 + 2a-4z2 - 3a-4z4 - 2a-3z + 5a-3z3 - 4a-3z5 + 3a-2z2 - a-2z4 - 2a-2z6 - a-1z-1 - 4a-1z + 12a-1z3 - 7a-1z5 + 1 + 2z2 + z4 - 2z6 - az-1 - 2az + 6az3 - 3az5 + a2z2 - a2z4

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 10       1
j = 8      2 
j = 6     21 
j = 4    22  
j = 2   32   
j = 0  24    
j = -2 11     
j = -4 2      
j = -61       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[7, Alternating, 1]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[7, Alternating, 1]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 7, 13, 8], X[4, 13, 1, 14], X[10, 6, 11, 5], 
 
>   X[8, 4, 9, 3], X[14, 10, 5, 9], X[2, 12, 3, 11]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -7, 5, -3}, {4, -1, 2, -5, 6, -4, 7, -2, 3, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(5/2)    3        3                     3/2      5/2      7/2    9/2
q       - ---- + ------- - 5 Sqrt[q] + 4 q    - 4 q    + 3 q    - q
           3/2   Sqrt[q]
          q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -8    -6    -4   2     2      4    6    12    14
4 - q   + q   + q   + -- + q  + 2 q  - q  - q   + q
                       2
                      q
In[8]:=
HOMFLYPT[Link[7, Alternating, 1]][a, z]
Out[8]=   
                               3      3           5
   1     a   z    2 z         z    3 z       3   z
-(---) + - - -- + --- - a z - -- + ---- - a z  + --
  a z    z    3    a           3    a            a
             a                a
In[9]:=
Kauffman[Link[7, Alternating, 1]][a, z]
Out[9]=   
                                            2      2            3      3
     1    a   2 z   4 z              2   2 z    3 z     2  2   z    5 z
1 - --- - - - --- - --- - 2 a z + 2 z  + ---- + ---- + a  z  - -- + ---- + 
    a z   z    3     a                     4      2             5     3
              a                           a      a             a     a
 
        3                    4    4              5      5                      6
    12 z         3    4   3 z    z     2  4   4 z    7 z         5      6   2 z
>   ----- + 6 a z  + z  - ---- - -- - a  z  - ---- - ---- - 3 a z  - 2 z  - ----
      a                     4     2             3     a                       2
                           a     a             a                             a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       2       1     2    1        2        4        4  2
4 + 3 q  + ----- + ----- + ----- + - + ---- + 2 q  t + 2 q  t + 2 q  t  + 
            6  3    4  2    2  2   t    2
           q  t    q  t    q  t        q  t
 
       6  2    6  3      8  3    10  4
>   2 q  t  + q  t  + 2 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L7a1
L6n1
L6n1
L7a2
L7a2