© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: |
|
![]() Knotscape |
This page is passe. Go here
instead!
The 3-Component Link L6n1"Three fibers in the Hopf fibration"Visit L6n1's page at Knotilus! |
![]() DrawMorseLink |
Further views: |
![]() Rich Schwartz' "98" |
PD Presentation: | X6172 X12,8,9,7 X4,12,1,11 X5,11,6,10 X3845 X9,3,10,2 |
Gauss Code: | {{1, 6, -5, -3}, {-4, -1, 2, 5}, {-6, 4, 3, -2}} |
Jones Polynomial: | 2 + q2 + q4 |
A2 (sl(3)) Invariant: | 2q-2 + 3 + 4q2 + 4q4 + 4q6 + 4q8 + 3q10 + 2q12 + q14 |
HOMFLY-PT Polynomial: | a-4z-2 + a-4 - 2a-2z-2 - 3a-2 - a-2z2 + z-2 + 2 |
Kauffman Polynomial: | - a-4z-2 + 3a-4 - 4a-4z2 + a-4z4 + 2a-3z-1 - 3a-3z + a-3z3 - 2a-2z-2 + 5a-2 - 4a-2z2 + a-2z4 + 2a-1z-1 - 3a-1z + a-1z3 - z-2 + 3 |
Khovanov Homology: |
|
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[6, NonAlternating, 1]]] |
![]() | |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[6, NonAlternating, 1]] |
Out[4]= | PD[X[6, 1, 7, 2], X[12, 8, 9, 7], X[4, 12, 1, 11], X[5, 11, 6, 10], > X[3, 8, 4, 5], X[9, 3, 10, 2]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, 6, -5, -3}, {-4, -1, 2, 5}, {-6, 4, 3, -2}] |
In[6]:= | Jones[L][q] |
Out[6]= | 2 4 2 + q + q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | 2 2 4 6 8 10 12 14 3 + -- + 4 q + 4 q + 4 q + 4 q + 3 q + 2 q + q 2 q |
In[8]:= | HOMFLYPT[Link[6, NonAlternating, 1]][a, z] |
Out[8]= | 2 -4 3 -2 1 2 z 2 + a - -- + z + ----- - ----- - -- 2 4 2 2 2 2 a a z a z a |
In[9]:= | Kauffman[Link[6, NonAlternating, 1]][a, z] |
Out[9]= | 2 2 3 3 5 -2 1 2 2 2 3 z 3 z 4 z 4 z z 3 + -- + -- - z - ----- - ----- + ---- + --- - --- - --- - ---- - ---- + -- + 4 2 4 2 2 2 3 a z 3 a 4 2 3 a a a z a z a z a a a a 3 4 4 z z z > -- + -- + -- a 4 2 a a |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 3 5 2 7 4 9 4 - + 3 q + q + q t + q t + q t + q t q |
Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L6n1 |
|