© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L6a4
L6a4
L6n1
L6n1
L6a5
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L6a5

Visit L6a5's page at Knotilus!

Acknowledgement

L6a5 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X12,7,9,8 X8,11,5,12 X2536 X4,9,1,10

Gauss Code: {{1, -5, 2, -6}, {5, -1, 3, -4}, {6, -2, 4, -3}}

Jones Polynomial: q-7 - q-6 + 3q-5 - q-4 + 3q-3 - 2q-2 + q-1

A2 (sl(3)) Invariant: q-24 + 3q-22 + 3q-20 + 4q-18 + 5q-16 + 4q-14 + 4q-12 + 2q-10 + q-8 - q-4 + q-2

HOMFLY-PT Polynomial: a2z2 + a4z-2 + 3a4 + 2a4z2 - 2a6z-2 - 3a6 + a8z-2

Kauffman Polynomial: a2z2 + 2a3z3 - a4z-2 + 3a4 - 5a4z2 + 3a4z4 + 2a5z-1 - 3a5z + a5z3 + a5z5 - 2a6z-2 + 5a6 - 9a6z2 + 4a6z4 + 2a7z-1 - 3a7z - a7z3 + a7z5 - a8z-2 + 3a8 - 3a8z2 + a8z4

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -1      1
j = -3     21
j = -5    1  
j = -7    2  
j = -9  31   
j = -11 13    
j = -13       
j = -151      


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[6, Alternating, 5]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[6, Alternating, 5]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[12, 7, 9, 8], X[8, 11, 5, 12], 
 
>   X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -5, 2, -6}, {5, -1, 3, -4}, {6, -2, 4, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
 -7    -6   3     -4   3    2    1
q   - q   + -- - q   + -- - -- + -
             5          3    2   q
            q          q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -24    3     3     4     5     4     4     2     -8    -4    -2
q    + --- + --- + --- + --- + --- + --- + --- + q   - q   + q
        22    20    18    16    14    12    10
       q     q     q     q     q     q     q
In[8]:=
HOMFLYPT[Link[6, Alternating, 5]][a, z]
Out[8]=   
               4      6    8
   4      6   a    2 a    a     2  2      4  2
3 a  - 3 a  + -- - ---- + -- + a  z  + 2 a  z
               2     2     2
              z     z     z
In[9]:=
Kauffman[Link[6, Alternating, 5]][a, z]
Out[9]=   
                      4      6    8      5      7
   4      6      8   a    2 a    a    2 a    2 a       5        7      2  2
3 a  + 5 a  + 3 a  - -- - ---- - -- + ---- + ---- - 3 a  z - 3 a  z + a  z  - 
                      2     2     2    z      z
                     z     z     z
 
       4  2      6  2      8  2      3  3    5  3    7  3      4  4      6  4
>   5 a  z  - 9 a  z  - 3 a  z  + 2 a  z  + a  z  - a  z  + 3 a  z  + 4 a  z  + 
 
     8  4    5  5    7  5
>   a  z  + a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -3   1     1        1        3        3       1       2       1      2
q   + - + ------ + ------ + ------ + ----- + ----- + ----- + ----- + ----
      q    15  6    11  5    11  4    9  4    9  3    7  2    5  2    3
          q   t    q   t    q   t    q  t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L6a5
L6a4
L6a4
L6n1
L6n1