© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L6a3
L6a3
L6a5
L6a5
L6a4
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L6a4

Also known as "The Borromean Link" or "The Borromean Rings".

Visit Peter Cromwell's page on the Borromean Rings.

Visit L6a4's page at Knotilus!

Acknowledgement

L6a4 as Morse Link
DrawMorseLink

Further views:   A Borromean link by Dylan Thurston
A Borromean link by Dylan Thurston
A Borromean bathroom tile
A Borromean bathroom tile
A Borromean rattle by Sassy
A Borromean rattle by Sassy
A Borromean link at the Fields Institute
A Borromean link at the Fields Institute
Borromean paper clips
Borromean paper clips
The Colombo Mall
The Colombo Mall in Lisboa

PD Presentation: X6172 X12,8,9,7 X4,12,1,11 X10,5,11,6 X8453 X2,9,3,10

Gauss Code: {{1, -6, 5, -3}, {4, -1, 2, -5}, {6, -4, 3, -2}}

Jones Polynomial: - q-3 + 3q-2 - 2q-1 + 4 - 2q + 3q2 - q3

A2 (sl(3)) Invariant: - q-10 + q-8 + 2q-6 + 3q-4 + 6q-2 + 5 + 6q2 + 3q4 + 2q6 + q8 - q10

HOMFLY-PT Polynomial: a-2z-2 - a-2z2 - 2z-2 + 2z2 + z4 + a2z-2 - a2z2

Kauffman Polynomial: a-3z3 + a-2z-2 - 4a-2z2 + 3a-2z4 - 2a-1z-1 - a-1z3 + 2a-1z5 + 2z-2 + 1 - 8z2 + 6z4 - 2az-1 - az3 + 2az5 + a2z-2 - 4a2z2 + 3a2z4 + a3z3

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 7      1
j = 5     2 
j = 3     1 
j = 1   42  
j = -1  24   
j = -3 1     
j = -5 2     
j = -71      


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[6, Alternating, 4]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[6, Alternating, 4]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 8, 9, 7], X[4, 12, 1, 11], X[10, 5, 11, 6], 
 
>   X[8, 4, 5, 3], X[2, 9, 3, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -6, 5, -3}, {4, -1, 2, -5}, {6, -4, 3, -2}]
In[6]:=
Jones[L][q]
Out[6]=   
     -3   3    2            2    3
4 - q   + -- - - - 2 q + 3 q  - q
           2   q
          q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -10    -8   2    3    6       2      4      6    8    10
5 - q    + q   + -- + -- + -- + 6 q  + 3 q  + 2 q  + q  - q
                  6    4    2
                 q    q    q
In[8]:=
HOMFLYPT[Link[6, Alternating, 4]][a, z]
Out[8]=   
              2           2
-2     1     a       2   z     2  2    4
-- + ----- + -- + 2 z  - -- - a  z  + z
 2    2  2    2           2
z    a  z    z           a
In[9]:=
Kauffman[Link[6, Alternating, 4]][a, z]
Out[9]=   
                  2                         2              3    3
    2      1     a     2    2 a      2   4 z       2  2   z    z       3
1 + -- + ----- + -- - --- - --- - 8 z  - ---- - 4 a  z  + -- - -- - a z  + 
     2    2  2    2   a z    z             2               3   a
    z    a  z    z                        a               a
 
                      4                5
     3  3      4   3 z       2  4   2 z         5
>   a  z  + 6 z  + ---- + 3 a  z  + ---- + 2 a z
                     2               a
                    a
In[10]:=
Kh[L][q, t]
Out[10]=   
4           1       2       1      2             3  2      5  2    7  3
- + 4 q + ----- + ----- + ----- + --- + 2 q t + q  t  + 2 q  t  + q  t
q          7  3    5  2    3  2   q t
          q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L6a4
L6a3
L6a3
L6a5
L6a5