© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: |
|
![]() Knotscape |
This page is passe. Go here
instead!
The 3-Component Link L6a4Also known as "The Borromean Link" or "The Borromean Rings". Visit Peter Cromwell's page on the Borromean Rings. Visit L6a4's page at Knotilus! |
![]() DrawMorseLink |
Further views: |
![]() A Borromean link by Dylan Thurston |
![]() A Borromean bathroom tile |
![]() A Borromean rattle by Sassy |
![]() A Borromean link at the Fields Institute |
![]() Borromean paper clips |
![]() The Colombo Mall in Lisboa |
PD Presentation: | X6172 X12,8,9,7 X4,12,1,11 X10,5,11,6 X8453 X2,9,3,10 |
Gauss Code: | {{1, -6, 5, -3}, {4, -1, 2, -5}, {6, -4, 3, -2}} |
Jones Polynomial: | - q-3 + 3q-2 - 2q-1 + 4 - 2q + 3q2 - q3 |
A2 (sl(3)) Invariant: | - q-10 + q-8 + 2q-6 + 3q-4 + 6q-2 + 5 + 6q2 + 3q4 + 2q6 + q8 - q10 |
HOMFLY-PT Polynomial: | a-2z-2 - a-2z2 - 2z-2 + 2z2 + z4 + a2z-2 - a2z2 |
Kauffman Polynomial: | a-3z3 + a-2z-2 - 4a-2z2 + 3a-2z4 - 2a-1z-1 - a-1z3 + 2a-1z5 + 2z-2 + 1 - 8z2 + 6z4 - 2az-1 - az3 + 2az5 + a2z-2 - 4a2z2 + 3a2z4 + a3z3 |
Khovanov Homology: |
|
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[6, Alternating, 4]]] |
![]() | |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[6, Alternating, 4]] |
Out[4]= | PD[X[6, 1, 7, 2], X[12, 8, 9, 7], X[4, 12, 1, 11], X[10, 5, 11, 6], > X[8, 4, 5, 3], X[2, 9, 3, 10]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -6, 5, -3}, {4, -1, 2, -5}, {6, -4, 3, -2}] |
In[6]:= | Jones[L][q] |
Out[6]= | -3 3 2 2 3 4 - q + -- - - - 2 q + 3 q - q 2 q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -10 -8 2 3 6 2 4 6 8 10 5 - q + q + -- + -- + -- + 6 q + 3 q + 2 q + q - q 6 4 2 q q q |
In[8]:= | HOMFLYPT[Link[6, Alternating, 4]][a, z] |
Out[8]= | 2 2 -2 1 a 2 z 2 2 4 -- + ----- + -- + 2 z - -- - a z + z 2 2 2 2 2 z a z z a |
In[9]:= | Kauffman[Link[6, Alternating, 4]][a, z] |
Out[9]= | 2 2 3 3 2 1 a 2 2 a 2 4 z 2 2 z z 3 1 + -- + ----- + -- - --- - --- - 8 z - ---- - 4 a z + -- - -- - a z + 2 2 2 2 a z z 2 3 a z a z z a a 4 5 3 3 4 3 z 2 4 2 z 5 > a z + 6 z + ---- + 3 a z + ---- + 2 a z 2 a a |
In[10]:= | Kh[L][q, t] |
Out[10]= | 4 1 2 1 2 3 2 5 2 7 3 - + 4 q + ----- + ----- + ----- + --- + 2 q t + q t + 2 q t + q t q 7 3 5 2 3 2 q t q t q t q t |
Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L6a4 |
|