© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L7a1
L7a1
L7a3
L7a3
L7a2
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L7a2

Visit L7a2's page at Knotilus!

Acknowledgement

L7a2 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X14,11,5,12 X12,7,13,8 X8,13,9,14 X2536 X4,9,1,10

Gauss Code: {{1, -6, 2, -7}, {6, -1, 4, -5, 7, -2, 3, -4, 5, -3}}

Jones Polynomial: q-17/2 - 2q-15/2 + 3q-13/2 - 4q-11/2 + 3q-9/2 - 4q-7/2 + 2q-5/2 - q-3/2

A2 (sl(3)) Invariant: - q-28 - 2q-26 + q-20 + 3q-18 + 2q-16 + 3q-14 + q-12 + q-10 + q-8 - q-6 + q-4

HOMFLY-PT Polynomial: - a3z - a3z3 - 2a5z-1 - 4a5z - 2a5z3 + 3a7z-1 + 3a7z - a9z-1

Kauffman Polynomial: a3z - a3z3 + a4z2 - 2a4z4 + 2a5z-1 - 5a5z + 5a5z3 - 3a5z5 - 3a6 + 6a6z2 - 3a6z4 - a6z6 + 3a7z-1 - 8a7z + 10a7z3 - 5a7z5 - 3a8 + 7a8z2 - 2a8z4 - a8z6 + a9z-1 - 2a9z + 4a9z3 - 2a9z5 - a10 + 2a10z2 - a10z4

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2       1
j = -4      21
j = -6     2  
j = -8    12  
j = -10   32   
j = -12  12    
j = -14 12     
j = -16 1      
j = -181       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[7, Alternating, 2]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[7, Alternating, 2]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 11, 5, 12], X[12, 7, 13, 8], 
 
>   X[8, 13, 9, 14], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -6, 2, -7}, {6, -1, 4, -5, 7, -2, 3, -4, 5, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(17/2)     2       3       4      3      4      2      -(3/2)
q        - ----- + ----- - ----- + ---- - ---- + ---- - q
            15/2    13/2    11/2    9/2    7/2    5/2
           q       q       q       q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -28    2     -20    3     2     3     -12    -10    -8    -6    -4
-q    - --- + q    + --- + --- + --- + q    + q    + q   - q   + q
         26           18    16    14
        q            q     q     q
In[8]:=
HOMFLYPT[Link[7, Alternating, 2]][a, z]
Out[8]=   
    5      7    9
-2 a    3 a    a     3        5        7      3  3      5  3
----- + ---- - -- - a  z - 4 a  z + 3 a  z - a  z  - 2 a  z
  z      z     z
In[9]:=
Kauffman[Link[7, Alternating, 2]][a, z]
Out[9]=   
                        5      7    9
    6      8    10   2 a    3 a    a     3        5        7        9
-3 a  - 3 a  - a   + ---- + ---- + -- + a  z - 5 a  z - 8 a  z - 2 a  z + 
                      z      z     z
 
     4  2      6  2      8  2      10  2    3  3      5  3       7  3
>   a  z  + 6 a  z  + 7 a  z  + 2 a   z  - a  z  + 5 a  z  + 10 a  z  + 
 
       9  3      4  4      6  4      8  4    10  4      5  5      7  5
>   4 a  z  - 2 a  z  - 3 a  z  - 2 a  z  - a   z  - 3 a  z  - 5 a  z  - 
 
       9  5    6  6    8  6
>   2 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4    -2     1        1        1        2        1        2        3
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             18  7    16  6    14  6    14  5    12  5    12  4    10  4
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        1       2       2      2
>   ------ + ----- + ----- + ----- + ----
     10  3    8  3    8  2    6  2    4
    q   t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L7a2
L7a1
L7a1
L7a3
L7a3