© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n453
L11n453
L11n455
L11n455
L11n454
Knotscape
This page is passe. Go here instead!

The 4-Component Link

L11n454

Visit L11n454's page at Knotilus!

Acknowledgement

L11n454 as Morse Link
DrawMorseLink

PD Presentation: X6172 X5,12,6,13 X3849 X2,16,3,15 X16,7,17,8 X19,22,20,15 X21,14,22,11 X13,20,14,21 X9,18,10,19 X11,10,12,5 X17,1,18,4

Gauss Code: {{1, -4, -3, 11}, {-10, 2, -8, 7}, {-2, -1, 5, 3, -9, 10}, {4, -5, -11, 9, -6, 8, -7, 6}}

Jones Polynomial: q-21/2 - 3q-19/2 + 4q-17/2 - 7q-15/2 + 7q-13/2 - 9q-11/2 + 6q-9/2 - 7q-7/2 + 2q-5/2 - 2q-3/2

A2 (sl(3)) Invariant: - q-32 + q-30 + q-28 + 2q-26 + 7q-24 + 6q-22 + 9q-20 + 10q-18 + 10q-16 + 12q-14 + 8q-12 + 8q-10 + 5q-8 + q-6 + 2q-4

HOMFLY-PT Polynomial: - a3z-3 - 4a3z-1 - 5a3z - 2a3z3 + 3a5z-3 + 9a5z-1 + 7a5z + 3a5z3 + a5z5 - 3a7z-3 - 6a7z-1 - a7z + 2a7z3 + a7z5 + a9z-3 + a9z-1 - a9z - a9z3

Kauffman Polynomial: a3z-3 - 5a3z-1 + 7a3z - 3a3z3 - 3a4z-2 + 10a4 - 8a4z2 + 2a4z4 - a4z6 + 3a5z-3 - 12a5z-1 + 19a5z - 16a5z3 + 6a5z5 - 2a5z7 - 6a6z-2 + 19a6 - 15a6z2 - a6z4 + 4a6z6 - 2a6z8 + 3a7z-3 - 12a7z-1 + 25a7z - 31a7z3 + 16a7z5 - 2a7z7 - a7z9 - 3a8z-2 + 10a8 - 7a8z2 - 10a8z4 + 15a8z6 - 5a8z8 + a9z-3 - 5a9z-1 + 16a9z - 28a9z3 + 21a9z5 - 3a9z7 - a9z9 - a10z2 - 4a10z4 + 9a10z6 - 3a10z8 + 3a11z - 10a11z3 + 11a11z5 - 3a11z7 - a12z2 + 3a12z4 - a12z6

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2         2
j = -4        22
j = -6       5  
j = -8      34  
j = -10     63   
j = -12    35    
j = -14   44     
j = -16  25      
j = -18 12       
j = -20 2        
j = -221         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
4
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 454]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 454]]
Out[4]=   
PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[2, 16, 3, 15], 
 
>   X[16, 7, 17, 8], X[19, 22, 20, 15], X[21, 14, 22, 11], X[13, 20, 14, 21], 
 
>   X[9, 18, 10, 19], X[11, 10, 12, 5], X[17, 1, 18, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, -3, 11}, {-10, 2, -8, 7}, {-2, -1, 5, 3, -9, 10}, 
 
>   {4, -5, -11, 9, -6, 8, -7, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(21/2)     3       4       7       7       9      6      7      2      2
q        - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ----
            19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
           q       q       q       q       q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -32    -30    -28    2     7     6     9    10    10    12     8     8
-q    + q    + q    + --- + --- + --- + --- + --- + --- + --- + --- + --- + 
                       26    24    22    20    18    16    14    12    10
                      q     q     q     q     q     q     q     q     q
 
    5     -6   2
>   -- + q   + --
     8          4
    q          q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 454]][a, z]
Out[8]=   
   3       5      7    9      3      5      7    9
  a     3 a    3 a    a    4 a    9 a    6 a    a       3        5      7
-(--) + ---- - ---- + -- - ---- + ---- - ---- + -- - 5 a  z + 7 a  z - a  z - 
   3      3      3     3    z      z      z     z
  z      z      z     z
 
     9        3  3      5  3      7  3    9  3    5  5    7  5
>   a  z - 2 a  z  + 3 a  z  + 2 a  z  - a  z  + a  z  + a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 454]][a, z]
Out[9]=   
                         3      5      7    9      4      6      8      3
    4       6       8   a    3 a    3 a    a    3 a    6 a    3 a    5 a
10 a  + 19 a  + 10 a  + -- + ---- + ---- + -- - ---- - ---- - ---- - ---- - 
                         3     3      3     3     2      2      2     z
                        z     z      z     z     z      z      z
 
        5       7      9
    12 a    12 a    5 a       3         5         7         9        11
>   ----- - ----- - ---- + 7 a  z + 19 a  z + 25 a  z + 16 a  z + 3 a   z - 
      z       z      z
 
       4  2       6  2      8  2    10  2    12  2      3  3       5  3
>   8 a  z  - 15 a  z  - 7 a  z  - a   z  - a   z  - 3 a  z  - 16 a  z  - 
 
        7  3       9  3       11  3      4  4    6  4       8  4      10  4
>   31 a  z  - 28 a  z  - 10 a   z  + 2 a  z  - a  z  - 10 a  z  - 4 a   z  + 
 
       12  4      5  5       7  5       9  5       11  5    4  6      6  6
>   3 a   z  + 6 a  z  + 16 a  z  + 21 a  z  + 11 a   z  - a  z  + 4 a  z  + 
 
        8  6      10  6    12  6      5  7      7  7      9  7      11  7
>   15 a  z  + 9 a   z  - a   z  - 2 a  z  - 2 a  z  - 3 a  z  - 3 a   z  - 
 
       6  8      8  8      10  8    7  9    9  9
>   2 a  z  - 5 a  z  - 3 a   z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
2    2      1        2        1        2        2        5        4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    22  9    20  8    18  8    18  7    16  7    16  6    14  6
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      4        3        5        6        3        3       4       5      2
>   ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----
     14  5    12  5    12  4    10  4    10  3    8  3    8  2    6  2    4
    q   t    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n454
L11n453
L11n453
L11n455
L11n455