© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n452
L11n452
L11n454
L11n454
L11n453
Knotscape
This page is passe. Go here instead!

The 4-Component Link

L11n453

Visit L11n453's page at Knotilus!

Acknowledgement

L11n453 as Morse Link
DrawMorseLink

PD Presentation: X6172 X5,12,6,13 X3849 X15,2,16,3 X16,7,17,8 X19,22,20,15 X21,14,22,11 X13,20,14,21 X9,18,10,19 X11,10,12,5 X4,17,1,18

Gauss Code: {{1, 4, -3, -11}, {-10, 2, -8, 7}, {-2, -1, 5, 3, -9, 10}, {-4, -5, 11, 9, -6, 8, -7, 6}}

Jones Polynomial: q-25/2 - 3q-23/2 + 3q-21/2 - 6q-19/2 + 4q-17/2 - 6q-15/2 + 3q-13/2 - 4q-11/2 + q-9/2 - q-7/2

A2 (sl(3)) Invariant: - q-42 + q-40 + q-38 + 3q-36 + 6q-34 + 8q-32 + 12q-30 + 10q-28 + 12q-26 + 9q-24 + 7q-22 + 6q-20 + 3q-18 + 3q-16 + q-12

HOMFLY-PT Polynomial: - a7z-3 - 5a7z-1 - 11a7z - 12a7z3 - 6a7z5 - a7z7 + 3a9z-3 + 10a9z-1 + 11a9z - 4a9z5 - a9z7 - 3a11z-3 - 5a11z-1 + a11z + 4a11z3 + a11z5 + a13z-3 - a13z

Kauffman Polynomial: a7z-3 - 5a7z-1 + 11a7z - 12a7z3 + 6a7z5 - a7z7 - 3a8z-2 + 10a8 - 12a8z2 + 3a8z4 + 3a8z6 - a8z8 + 3a9z-3 - 12a9z-1 + 23a9z - 22a9z3 + 8a9z5 + 2a9z7 - a9z9 - 6a10z-2 + 19a10 - 15a10z2 - 10a10z4 + 16a10z6 - 4a10z8 + 3a11z-3 - 12a11z-1 + 21a11z - 25a11z3 + 14a11z5 - a11z9 - 3a12z-2 + 10a12 - 3a12z2 - 12a12z4 + 12a12z6 - 3a12z8 + a13z-3 - 5a13z-1 + 12a13z - 18a13z3 + 12a13z5 - 3a13z7 - a14z2 + a14z4 - a14z6 + 3a15z - 3a15z3 - a16z2

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -6         1
j = -8        11
j = -10       3  
j = -12     111  
j = -14     63   
j = -16   222    
j = -18   64     
j = -20 124      
j = -22 22       
j = -24 2        
j = -261         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
4
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 453]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 453]]
Out[4]=   
PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[15, 2, 16, 3], 
 
>   X[16, 7, 17, 8], X[19, 22, 20, 15], X[21, 14, 22, 11], X[13, 20, 14, 21], 
 
>   X[9, 18, 10, 19], X[11, 10, 12, 5], X[4, 17, 1, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -3, -11}, {-10, 2, -8, 7}, {-2, -1, 5, 3, -9, 10}, 
 
>   {-4, -5, 11, 9, -6, 8, -7, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(25/2)     3       3       6       4       6       3       4      -(9/2)
q        - ----- + ----- - ----- + ----- - ----- + ----- - ----- + q       - 
            23/2    21/2    19/2    17/2    15/2    13/2    11/2
           q       q       q       q       q       q       q
 
     -(7/2)
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -42    -40    -38    3     6     8    12    10    12     9     7     6
-q    + q    + q    + --- + --- + --- + --- + --- + --- + --- + --- + --- + 
                       36    34    32    30    28    26    24    22    20
                      q     q     q     q     q     q     q     q     q
 
     3     3     -12
>   --- + --- + q
     18    16
    q     q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 453]][a, z]
Out[8]=   
   7       9      11    13      7       9      11
  a     3 a    3 a     a     5 a    10 a    5 a         7         9      11
-(--) + ---- - ----- + --- - ---- + ----- - ----- - 11 a  z + 11 a  z + a   z - 
   3      3      3      3     z       z       z
  z      z      z      z
 
     13         7  3      11  3      7  5      9  5    11  5    7  7    9  7
>   a   z - 12 a  z  + 4 a   z  - 6 a  z  - 4 a  z  + a   z  - a  z  - a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 453]][a, z]
Out[9]=   
                           7      9      11    13      8      10      12
    8       10       12   a    3 a    3 a     a     3 a    6 a     3 a
10 a  + 19 a   + 10 a   + -- + ---- + ----- + --- - ---- - ----- - ----- - 
                           3     3      3      3      2      2       2
                          z     z      z      z      z      z       z
 
       7       9       11      13
    5 a    12 a    12 a     5 a         7         9         11         13
>   ---- - ----- - ------ - ----- + 11 a  z + 23 a  z + 21 a   z + 12 a   z + 
     z       z       z        z
 
       15         8  2       10  2      12  2    14  2    16  2       7  3
>   3 a   z - 12 a  z  - 15 a   z  - 3 a   z  - a   z  - a   z  - 12 a  z  - 
 
        9  3       11  3       13  3      15  3      8  4       10  4
>   22 a  z  - 25 a   z  - 18 a   z  - 3 a   z  + 3 a  z  - 10 a   z  - 
 
        12  4    14  4      7  5      9  5       11  5       13  5      8  6
>   12 a   z  + a   z  + 6 a  z  + 8 a  z  + 14 a   z  + 12 a   z  + 3 a  z  + 
 
        10  6       12  6    14  6    7  7      9  7      13  7    8  8
>   16 a   z  + 12 a   z  - a   z  - a  z  + 2 a  z  - 3 a   z  - a  z  - 
 
       10  8      12  8    9  9    11  9
>   4 a   z  - 3 a   z  - a  z  - a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -8    -6     1        2        2        1        2        2        4
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             26  9    24  8    22  8    20  8    22  7    20  7    20  6
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      6        2        4        2        2        6        1        3
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     18  6    16  6    18  5    16  5    16  4    14  4    12  4    14  3
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1        1        3       1
>   ------ + ------ + ------ + ----
     12  3    12  2    10  2    8
    q   t    q   t    q   t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n453
L11n452
L11n452
L11n454
L11n454