© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n454
L11n454
L11n456
L11n456
L11n455
Knotscape
This page is passe. Go here instead!

The 4-Component Link

L11n455

Visit L11n455's page at Knotilus!

Acknowledgement

L11n455 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,5,15,6 X12,4,13,3 X2,9,3,10 X7,19,8,18 X17,9,18,8 X10,13,5,14 X19,22,20,17 X21,11,22,16 X11,21,12,20 X4,16,1,15

Gauss Code: {{1, -4, 3, -11}, {2, -1, -5, 6, 4, -7}, {-10, -3, 7, -2, 11, 9}, {-6, 5, -8, 10, -9, 8}}

Jones Polynomial: q-7/2 - 4q-5/2 + 5q-3/2 - 8q-1/2 + 7q1/2 - 9q3/2 + 5q5/2 - 6q7/2 + 2q9/2 - q11/2

A2 (sl(3)) Invariant: - q-12 + 3q-8 + q-6 + 4q-4 + 4q-2 + 5 + 10q2 + 10q4 + 14q6 + 11q8 + 8q10 + 7q12 + 2q14 + 2q16 + q18

HOMFLY-PT Polynomial: - a-5z-3 - 2a-5z-1 - a-5z + 3a-3z-3 + 7a-3z-1 + 8a-3z + 3a-3z3 - 3a-1z-3 - 8a-1z-1 - 12a-1z - 8a-1z3 - 2a-1z5 + az-3 + 3az-1 + 6az + 3az3 - a3z

Kauffman Polynomial: a-5z-3 - 5a-5z-1 + 10a-5z - 10a-5z3 + 5a-5z5 - a-5z7 - 3a-4z-2 + 10a-4 - 9a-4z2 - 3a-4z4 + 7a-4z6 - 2a-4z8 + 3a-3z-3 - 12a-3z-1 + 27a-3z - 42a-3z3 + 27a-3z5 - 3a-3z7 - a-3z9 - 6a-2z-2 + 19a-2 - 18a-2z2 - 6a-2z4 + 19a-2z6 - 6a-2z8 + 3a-1z-3 - 12a-1z-1 + 31a-1z - 52a-1z3 + 39a-1z5 - 7a-1z7 - a-1z9 - 3z-2 + 10 - 10z2 - z4 + 10z6 - 4z8 + az-3 - 5az-1 + 16az - 24az3 + 17az5 - 5az7 - 2a2z2 + 2a2z4 - 2a2z6 + 2a3z - 4a3z3 - a4z2

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 12         1
j = 10        1 
j = 8       51 
j = 6      23  
j = 4     73   
j = 2   134    
j = 0   65     
j = -2 124      
j = -4 34       
j = -6 3        
j = -81         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
4
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 455]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 455]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 5, 15, 6], X[12, 4, 13, 3], X[2, 9, 3, 10], 
 
>   X[7, 19, 8, 18], X[17, 9, 18, 8], X[10, 13, 5, 14], X[19, 22, 20, 17], 
 
>   X[21, 11, 22, 16], X[11, 21, 12, 20], X[4, 16, 1, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 3, -11}, {2, -1, -5, 6, 4, -7}, {-10, -3, 7, -2, 11, 9}, 
 
>   {-6, 5, -8, 10, -9, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(7/2)    4      5        8                     3/2      5/2      7/2
q       - ---- + ---- - ------- + 7 Sqrt[q] - 9 q    + 5 q    - 6 q    + 
           5/2    3/2   Sqrt[q]
          q      q
 
       9/2    11/2
>   2 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12   3     -6   4    4        2       4       6       8      10      12
5 - q    + -- + q   + -- + -- + 10 q  + 10 q  + 14 q  + 11 q  + 8 q   + 7 q   + 
            8          4    2
           q          q    q
 
       14      16    18
>   2 q   + 2 q   + q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 455]][a, z]
Out[8]=   
    1        3      3     a     2      7      8    3 a   z    8 z   12 z
-(-----) + ----- - ---- + -- - ---- + ---- - --- + --- - -- + --- - ---- + 
   5  3     3  3      3    3    5      3     a z    z     5    3     a
  a  z     a  z    a z    z    a  z   a  z               a    a
 
                      3      3               5
             3     3 z    8 z         3   2 z
>   6 a z - a  z + ---- - ---- + 3 a z  - ----
                     3     a               a
                    a
In[9]:=
Kauffman[Link[11, NonAlternating, 455]][a, z]
Out[9]=   
     10   19     1       3      3     a    3      3       6      5      12
10 + -- + -- + ----- + ----- + ---- + -- - -- - ----- - ----- - ---- - ---- - 
      4    2    5  3    3  3      3    3    2    4  2    2  2    5      3
     a    a    a  z    a  z    a z    z    z    a  z    a  z    a  z   a  z
 
                                                                  2       2
    12    5 a   10 z   27 z   31 z               3         2   9 z    18 z
>   --- - --- + ---- + ---- + ---- + 16 a z + 2 a  z - 10 z  - ---- - ----- - 
    a z    z      5      3     a                                 4      2
                 a      a                                       a      a
 
                          3       3       3                               4
       2  2    4  2   10 z    42 z    52 z          3      3  3    4   3 z
>   2 a  z  - a  z  - ----- - ----- - ----- - 24 a z  - 4 a  z  - z  - ---- - 
                        5       3       a                                4
                       a       a                                        a
 
       4                5       5       5                        6       6
    6 z       2  4   5 z    27 z    39 z          5       6   7 z    19 z
>   ---- + 2 a  z  + ---- + ----- + ----- + 17 a z  + 10 z  + ---- + ----- - 
      2                5      3       a                         4      2
     a                a      a                                 a      a
 
               7      7      7                      8      8    9    9
       2  6   z    3 z    7 z         7      8   2 z    6 z    z    z
>   2 a  z  - -- - ---- - ---- - 5 a z  - 4 z  - ---- - ---- - -- - --
               5     3     a                       4      2     3   a
              a     a                             a      a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
    4     2     1       3       3       1      4      2              2
6 + -- + q  + ----- + ----- + ----- + ----- + ---- + ---- + 5 t + 3 q  t + 
     2         8  3    6  2    4  2    2  2    4      2
    q         q  t    q  t    q  t    q  t    q  t   q  t
 
       2  2      4  2      4  3      6  3      6  4      8  4    8  5
>   4 q  t  + 7 q  t  + 3 q  t  + 2 q  t  + 3 q  t  + 5 q  t  + q  t  + 
 
     10  5    12  6
>   q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n455
L11n454
L11n454
L11n456
L11n456