PD Presentation: |
X6172 X10,3,11,4 X13,20,14,21 X16,12,17,11 X19,12,20,13 X8,16,5,15 X14,8,15,7 X17,19,18,22 X21,9,22,18 X2536 X4,9,1,10 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 4 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 448]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 448]] |
Out[4]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[13, 20, 14, 21], X[16, 12, 17, 11],
> X[19, 12, 20, 13], X[8, 16, 5, 15], X[14, 8, 15, 7], X[17, 19, 18, 22],
> X[21, 9, 22, 18], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, 2, -11}, {10, -1, 7, -6}, {-5, 3, -9, 8},
> {11, -2, 4, 5, -3, -7, 6, -4, -8, 9}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(9/2) 4 3 7 3/2 5/2 7/2 9/2
-q - ---- + ---- - ------- + 4 Sqrt[q] - 5 q + 4 q - 3 q + q
5/2 3/2 Sqrt[q]
q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -16 3 5 9 13 12 13 10 2 4 6 12 14
7 + q + --- + --- + --- + -- + -- + -- + -- + 5 q + q + 2 q + q - q
14 12 10 8 6 4 2
q q q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 448]][a, z] |
Out[8]= | 3 5 3 5
1 3 a 3 a a 2 5 a 4 a a z 3 z 3
-(----) + --- - ---- + -- - --- + --- - ---- + -- + -- - --- + 4 a z - 2 a z +
3 3 3 3 a z z z z 3 a
a z z z z a
3 3 5
z 3 z 3 z
> -- - ---- + 2 a z - --
3 a a
a |
In[9]:= | Kauffman[Link[11, NonAlternating, 448]][a, z] |
Out[9]= | 3 5 2 4
2 4 1 3 a 3 a a 3 6 a 3 a 3 6 a
6 + 11 a + 6 a + ---- + --- + ---- + -- - -- - ---- - ---- - --- - --- -
3 3 3 3 2 2 2 a z z
a z z z z z z z
3 5 2 2
6 a 3 a 3 z 8 z 3 5 2 z z
> ---- - ---- + --- + --- + 7 a z + 5 a z + 3 a z + 2 z - -- - -- -
z z 3 a 4 2
a a a
3 3 4 4
2 2 4 2 8 z 19 z 3 5 3 4 3 z 7 z
> a z - 3 a z - ---- - ----- - 10 a z - a z - 19 z + ---- - ---- -
3 a 4 2
a a a
5 5 6 6
2 4 11 z 13 z 5 3 5 6 z 11 z 2 6
> 9 a z + ----- + ----- + a z - a z + 17 z - -- + ----- + 5 a z -
3 a 4 2
a a a
7 8 9
3 z 7 8 3 z 2 8 z 9
> ---- + 3 a z - 4 z - ---- - a z - -- - a z
3 2 a
a a |
In[10]:= | Kh[L][q, t] |
Out[10]= | 7 2 1 2 1 1 3 2 1 1
7 + -- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + - + ---- +
2 10 4 8 4 6 4 8 3 6 2 4 2 t 4
q q t q t q t q t q t q t q t
3 2 2 2 4 2 4 3 6 3 6 4
> ---- + 3 t + 3 q t + 2 q t + 3 q t + 2 q t + 2 q t + q t +
2
q t
8 4 10 5
> 2 q t + q t |