© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n446
L11n446
L11n448
L11n448
L11n447
Knotscape
This page is passe. Go here instead!

The 4-Component Link

L11n447

Visit L11n447's page at Knotilus!

Acknowledgement

L11n447 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X11,18,12,19 X19,17,20,22 X21,9,22,16 X15,21,16,20 X17,12,18,13 X2536 X4,9,1,10

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -4}, {-9, 5, -6, 8, -7, 6}, {11, -2, -5, 9, 4, -3, -8, 7}}

Jones Polynomial: - q-17/2 + 2q-15/2 - 6q-13/2 + 7q-11/2 - 12q-9/2 + 9q-7/2 - 11q-5/2 + 8q-3/2 - 6q-1/2 + 2q1/2

A2 (sl(3)) Invariant: q-28 + 3q-26 + 3q-24 + 6q-22 + 10q-20 + 8q-18 + 13q-16 + 12q-14 + 10q-12 + 10q-10 + 3q-8 + 4q-6 - q-4 - q-2 + 2 - 2q2

HOMFLY-PT Polynomial: az-1 + 2az + 2az3 - a3z-3 - 7a3z-1 - 11a3z - 7a3z3 - 2a3z5 + 3a5z-3 + 12a5z-1 + 13a5z + 5a5z3 - 3a7z-3 - 7a7z-1 - 4a7z + a9z-3 + a9z-1

Kauffman Polynomial: 1 - 3z2 - 2az-1 + 5az - 7az3 - az5 + 6a2 - 15a2z2 + 14a2z4 - 7a2z6 + a3z-3 - 11a3z-1 + 31a3z - 45a3z3 + 35a3z5 - 11a3z7 - 3a4z-2 + 18a4 - 33a4z2 + 18a4z4 + 8a4z6 - 6a4z8 + 3a5z-3 - 18a5z-1 + 54a5z - 83a5z3 + 65a5z5 - 15a5z7 - a5z9 - 6a6z-2 + 21a6 - 27a6z2 - a6z4 + 22a6z6 - 8a6z8 + 3a7z-3 - 14a7z-1 + 38a7z - 55a7z3 + 34a7z5 - 5a7z7 - a7z9 - 3a8z-2 + 9a8 - 6a8z2 - 5a8z4 + 7a8z6 - 2a8z8 + a9z-3 - 5a9z-1 + 10a9z - 10a9z3 + 5a9z5 - a9z7

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1
j = 2         2
j = 0        4 
j = -2       64 
j = -4      531 
j = -6     46   
j = -8    85    
j = -10   510     
j = -12  12      
j = -14 15       
j = -16 1        
j = -181         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
4
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 447]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 447]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 7, 15, 8], X[8, 13, 5, 14], 
 
>   X[11, 18, 12, 19], X[19, 17, 20, 22], X[21, 9, 22, 16], X[15, 21, 16, 20], 
 
>   X[17, 12, 18, 13], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -4}, {-9, 5, -6, 8, -7, 6}, 
 
>   {11, -2, -5, 9, 4, -3, -8, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)     2       6       7      12     9      11     8        6
-q        + ----- - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 
             15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q       q      q      q      q
 
>   2 Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -28    3     3     6    10     8    13    12    10    10    3    4
2 + q    + --- + --- + --- + --- + --- + --- + --- + --- + --- + -- + -- - 
            26    24    22    20    18    16    14    12    10    8    6
           q     q     q     q     q     q     q     q     q     q    q
 
     -4    -2      2
>   q   - q   - 2 q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 447]][a, z]
Out[8]=   
   3       5      7    9          3       5      7    9
  a     3 a    3 a    a    a   7 a    12 a    7 a    a                3
-(--) + ---- - ---- + -- + - - ---- + ----- - ---- + -- + 2 a z - 11 a  z + 
   3      3      3     3   z    z       z      z     z
  z      z      z     z
 
        5        7          3      3  3      5  3      3  5
>   13 a  z - 4 a  z + 2 a z  - 7 a  z  + 5 a  z  - 2 a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 447]][a, z]
Out[9]=   
                                   3      5      7    9      4      6      8
       2       4       6      8   a    3 a    3 a    a    3 a    6 a    3 a
1 + 6 a  + 18 a  + 21 a  + 9 a  + -- + ---- + ---- + -- - ---- - ---- - ---- - 
                                   3     3      3     3     2      2      2
                                  z     z      z     z     z      z      z
 
              3       5       7      9
    2 a   11 a    18 a    14 a    5 a                3         5         7
>   --- - ----- - ----- - ----- - ---- + 5 a z + 31 a  z + 54 a  z + 38 a  z + 
     z      z       z       z      z
 
        9        2       2  2       4  2       6  2      8  2        3
>   10 a  z - 3 z  - 15 a  z  - 33 a  z  - 27 a  z  - 6 a  z  - 7 a z  - 
 
        3  3       5  3       7  3       9  3       2  4       4  4    6  4
>   45 a  z  - 83 a  z  - 55 a  z  - 10 a  z  + 14 a  z  + 18 a  z  - a  z  - 
 
       8  4      5       3  5       5  5       7  5      9  5      2  6
>   5 a  z  - a z  + 35 a  z  + 65 a  z  + 34 a  z  + 5 a  z  - 7 a  z  + 
 
       4  6       6  6      8  6       3  7       5  7      7  7    9  7
>   8 a  z  + 22 a  z  + 7 a  z  - 11 a  z  - 15 a  z  - 5 a  z  - a  z  - 
 
       4  8      6  8      8  8    5  9    7  9
>   6 a  z  - 8 a  z  - 2 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     -4   4      1        1        1        5        1        2        5
4 + q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
           2    18  8    16  7    14  7    14  6    12  6    12  5    10  5
          q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      10       8       5       4       6       5      3      6        2
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + 2 q  t
     10  4    8  4    8  3    6  3    6  2    4  2    4      2
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n447
L11n446
L11n446
L11n448
L11n448