© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n448
L11n448
L11n450
L11n450
L11n449
Knotscape
This page is passe. Go here instead!

The 4-Component Link

L11n449

Visit L11n449's page at Knotilus!

Acknowledgement

L11n449 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X13,20,14,21 X16,12,17,11 X19,12,20,13 X8,16,5,15 X14,8,15,7 X22,17,19,18 X18,21,9,22 X2536 X4,9,1,10

Gauss Code: {{1, -10, 2, -11}, {10, -1, 7, -6}, {-5, 3, 9, -8}, {11, -2, 4, 5, -3, -7, 6, -4, 8, -9}}

Jones Polynomial: - q-17/2 + q-15/2 - 5q-13/2 + 5q-11/2 - 9q-9/2 + 7q-7/2 - 8q-5/2 + 6q-3/2 - 5q-1/2 + q1/2

A2 (sl(3)) Invariant: q-28 + 3q-26 + 4q-24 + 8q-22 + 12q-20 + 10q-18 + 12q-16 + 9q-14 + 6q-12 + 6q-10 + 2q-8 + 4q-6 + q-4 + q-2 + 3 - q2

HOMFLY-PT Polynomial: - az-1 - az + az3 - a3z-3 - a3z-1 - 2a3z - 2a3z3 - a3z5 + 3a5z-3 + 6a5z-1 + 6a5z + 3a5z3 - 3a7z-3 - 5a7z-1 - 3a7z + a9z-3 + a9z-1

Kauffman Polynomial: - z2 + az-1 - 5az3 - a2 - a2z2 + 3a2z4 - 3a2z6 + a3z-3 - 3a3z-1 + 8a3z - 19a3z3 + 18a3z5 - 6a3z7 - 3a4z-2 + 11a4 - 11a4z2 + 9a4z6 - 4a4z8 + 3a5z-3 - 12a5z-1 + 22a5z - 30a5z3 + 26a5z5 - 5a5z7 - a5z9 - 6a6z-2 + 24a6 - 28a6z2 + 3a6z4 + 14a6z6 - 5a6z8 + 3a7z-3 - 14a7z-1 + 27a7z - 29a7z3 + 14a7z5 - a7z9 - 3a8z-2 + 13a8 - 17a8z2 + 6a8z4 + 2a8z6 - a8z8 + a9z-3 - 6a9z-1 + 13a9z - 13a9z3 + 6a9z5 - a9z7

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1
j = 2         1
j = 0        4 
j = -2       54 
j = -4      321 
j = -6     45   
j = -8    53    
j = -10   48     
j = -12  11      
j = -14  4       
j = -1611        
j = -181         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
4
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 449]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 449]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[13, 20, 14, 21], X[16, 12, 17, 11], 
 
>   X[19, 12, 20, 13], X[8, 16, 5, 15], X[14, 8, 15, 7], X[22, 17, 19, 18], 
 
>   X[18, 21, 9, 22], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 7, -6}, {-5, 3, 9, -8}, 
 
>   {11, -2, 4, 5, -3, -7, 6, -4, 8, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)    -(15/2)     5       5      9      7      8      6        5
-q        + q        - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 
                        13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
                       q       q       q      q      q      q
 
>   Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -28    3     4     8    12    10    12     9     6     6    2    4
3 + q    + --- + --- + --- + --- + --- + --- + --- + --- + --- + -- + -- + 
            26    24    22    20    18    16    14    12    10    8    6
           q     q     q     q     q     q     q     q     q     q    q
 
     -4    -2    2
>   q   + q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 449]][a, z]
Out[8]=   
   3       5      7    9        3      5      7    9
  a     3 a    3 a    a    a   a    6 a    5 a    a             3        5
-(--) + ---- - ---- + -- - - - -- + ---- - ---- + -- - a z - 2 a  z + 6 a  z - 
   3      3      3     3   z   z     z      z     z
  z      z      z     z
 
       7        3      3  3      5  3    3  5
>   3 a  z + a z  - 2 a  z  + 3 a  z  - a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 449]][a, z]
Out[9]=   
                               3      5      7    9      4      6      8
  2       4       6       8   a    3 a    3 a    a    3 a    6 a    3 a    a
-a  + 11 a  + 24 a  + 13 a  + -- + ---- + ---- + -- - ---- - ---- - ---- + - - 
                               3     3      3     3     2      2      2    z
                              z     z      z     z     z      z      z
 
       3       5       7      9
    3 a    12 a    14 a    6 a       3         5         7         9      2
>   ---- - ----- - ----- - ---- + 8 a  z + 22 a  z + 27 a  z + 13 a  z - z  - 
     z       z       z      z
 
     2  2       4  2       6  2       8  2        3       3  3       5  3
>   a  z  - 11 a  z  - 28 a  z  - 17 a  z  - 5 a z  - 19 a  z  - 30 a  z  - 
 
        7  3       9  3      2  4      6  4      8  4       3  5       5  5
>   29 a  z  - 13 a  z  + 3 a  z  + 3 a  z  + 6 a  z  + 18 a  z  + 26 a  z  + 
 
        7  5      9  5      2  6      4  6       6  6      8  6      3  7
>   14 a  z  + 6 a  z  - 3 a  z  + 9 a  z  + 14 a  z  + 2 a  z  - 6 a  z  - 
 
       5  7    9  7      4  8      6  8    8  8    5  9    7  9
>   5 a  z  - a  z  - 4 a  z  - 5 a  z  - a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     -4   4      1        1        1        4        1        1        4
4 + q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
           2    18  8    16  8    16  7    14  6    12  6    12  5    10  5
          q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      8        5       3       4       5       3      2      5      2
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + q  t
     10  4    8  4    8  3    6  3    6  2    4  2    4      2
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n449
L11n448
L11n448
L11n450
L11n450