© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n415
L11n415
L11n417
L11n417
L11n416
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n416

Visit L11n416's page at Knotilus!

Acknowledgement

L11n416 as Morse Link
DrawMorseLink

PD Presentation: X8192 X14,5,15,6 X10,3,11,4 X4,13,5,14 X2738 X6,9,1,10 X18,12,19,11 X12,18,7,17 X15,20,16,21 X19,22,20,13 X21,16,22,17

Gauss Code: {{1, -5, 3, -4, 2, -6}, {5, -1, 6, -3, 7, -8}, {4, -2, -9, 11, 8, -7, -10, 9, -11, 10}}

Jones Polynomial: - 2q-9 + 4q-8 - 6q-7 + 9q-6 - 8q-5 + 9q-4 - 6q-3 + 5q-2 - 2q-1 + 1

A2 (sl(3)) Invariant: - q-32 - q-30 - 3q-28 - 2q-26 + 6q-20 + 5q-18 + 7q-16 + 6q-14 + 2q-12 + 4q-10 + 2q-6 + q-4 + 1

HOMFLY-PT Polynomial: 2a2 + 3a2z2 + a2z4 + 2a4z-2 + 2a4 - a4z2 - 3a4z4 - a4z6 - 5a6z-2 - 9a6 - 7a6z2 - 4a6z4 - a6z6 + 4a8z-2 + 6a8 + 4a8z2 + a8z4 - a10z-2 - a10

Kauffman Polynomial: - 2a2 + 5a2z2 - 4a2z4 + a2z6 + a3z + 3a3z3 - 6a3z5 + 2a3z7 - 2a4z-2 + 6a4 - 4a4z2 - 4a4z6 + 2a4z8 + 5a5z-1 - 16a5z + 19a5z3 - 14a5z5 + 2a5z7 + a5z9 - 5a6z-2 + 20a6 - 36a6z2 + 36a6z4 - 22a6z6 + 6a6z8 + 9a7z-1 - 33a7z + 43a7z3 - 23a7z5 + 4a7z7 + a7z9 - 4a8z-2 + 17a8 - 32a8z2 + 34a8z4 - 16a8z6 + 4a8z8 + 5a9z-1 - 21a9z + 30a9z3 - 15a9z5 + 4a9z7 - a10z-2 + 4a10 - 5a10z2 + 2a10z4 + a10z6 + a11z-1 - 5a11z + 3a11z3

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 1         1
j = -1        1 
j = -3       41 
j = -5      43  
j = -7     52   
j = -9    45    
j = -11   54     
j = -13  14      
j = -15 35       
j = -17 2        
j = -192         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 416]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 416]]
Out[4]=   
PD[X[8, 1, 9, 2], X[14, 5, 15, 6], X[10, 3, 11, 4], X[4, 13, 5, 14], 
 
>   X[2, 7, 3, 8], X[6, 9, 1, 10], X[18, 12, 19, 11], X[12, 18, 7, 17], 
 
>   X[15, 20, 16, 21], X[19, 22, 20, 13], X[21, 16, 22, 17]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -5, 3, -4, 2, -6}, {5, -1, 6, -3, 7, -8}, 
 
>   {4, -2, -9, 11, 8, -7, -10, 9, -11, 10}]
In[6]:=
Jones[L][q]
Out[6]=   
    2    4    6    9    8    9    6    5    2
1 - -- + -- - -- + -- - -- + -- - -- + -- - -
     9    8    7    6    5    4    3    2   q
    q    q    q    q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -32    -30    3     2     6     5     7     6     2     4    2     -4
1 - q    - q    - --- - --- + --- + --- + --- + --- + --- + --- + -- + q
                   28    26    20    18    16    14    12    10    6
                  q     q     q     q     q     q     q     q     q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 416]][a, z]
Out[8]=   
                                     4      6      8    10
   2      4      6      8    10   2 a    5 a    4 a    a        2  2    4  2
2 a  + 2 a  - 9 a  + 6 a  - a   + ---- - ---- + ---- - --- + 3 a  z  - a  z  - 
                                    2      2      2     2
                                   z      z      z     z
 
       6  2      8  2    2  4      4  4      6  4    8  4    4  6    6  6
>   7 a  z  + 4 a  z  + a  z  - 3 a  z  - 4 a  z  + a  z  - a  z  - a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 416]][a, z]
Out[9]=   
                                          4      6      8    10      5      7
    2      4       6       8      10   2 a    5 a    4 a    a     5 a    9 a
-2 a  + 6 a  + 20 a  + 17 a  + 4 a   - ---- - ---- - ---- - --- + ---- + ---- + 
                                         2      2      2     2     z      z
                                        z      z      z     z
 
       9    11
    5 a    a      3         5         7         9        11        2  2
>   ---- + --- + a  z - 16 a  z - 33 a  z - 21 a  z - 5 a   z + 5 a  z  - 
     z      z
 
       4  2       6  2       8  2      10  2      3  3       5  3       7  3
>   4 a  z  - 36 a  z  - 32 a  z  - 5 a   z  + 3 a  z  + 19 a  z  + 43 a  z  + 
 
        9  3      11  3      2  4       6  4       8  4      10  4      3  5
>   30 a  z  + 3 a   z  - 4 a  z  + 36 a  z  + 34 a  z  + 2 a   z  - 6 a  z  - 
 
        5  5       7  5       9  5    2  6      4  6       6  6       8  6
>   14 a  z  - 23 a  z  - 15 a  z  + a  z  - 4 a  z  - 22 a  z  - 16 a  z  + 
 
     10  6      3  7      5  7      7  7      9  7      4  8      6  8
>   a   z  + 2 a  z  + 2 a  z  + 4 a  z  + 4 a  z  + 2 a  z  + 6 a  z  + 
 
       8  8    5  9    7  9
>   4 a  z  + a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    4      2        2        3        5        1        4        5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 5    3    19  7    17  6    15  6    15  5    13  5    13  4    11  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      4        4       5       5      2      4     t    t      2
>   ------ + ----- + ----- + ----- + ---- + ---- + -- + - + q t
     11  3    9  3    9  2    7  2    7      5      3   q
    q   t    q  t    q  t    q  t    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n416
L11n415
L11n415
L11n417
L11n417