© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n416
L11n416
L11n418
L11n418
L11n417
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n417

Visit L11n417's page at Knotilus!

Acknowledgement

L11n417 as Morse Link
DrawMorseLink

PD Presentation: X8192 X10,3,11,4 X15,21,16,20 X5,15,6,14 X13,5,14,4 X19,7,20,12 X11,19,12,18 X17,13,18,22 X21,17,22,16 X2738 X6,9,1,10

Gauss Code: {{1, -10, 2, 5, -4, -11}, {10, -1, 11, -2, -7, 6}, {-5, 4, -3, 9, -8, 7, -6, 3, -9, 8}}

Jones Polynomial: q-2 - q-1 + 4 - 3q + 5q2 - 4q3 + 4q4 - 3q5 + 2q6 - q7

A2 (sl(3)) Invariant: q-6 + q-4 + 3q-2 + 5 + 6q2 + 7q4 + 5q6 + 4q8 + q10 - 2q12 - q14 - 2q16 - q26

HOMFLY-PT Polynomial: - a-8 - a-6z-2 + 2a-6 + 4a-6z2 + a-6z4 + 4a-4z-2 + 4a-4 - 2a-4z2 - 4a-4z4 - a-4z6 - 5a-2z-2 - 10a-2 - 9a-2z2 - 5a-2z4 - a-2z6 + 2z-2 + 5 + 4z2 + z4

Kauffman Polynomial: a-9z - a-8 + 2a-8z2 + a-7z-1 - 2a-7z - a-7z3 + a-7z5 - a-6z-2 + 6a-6z2 - 10a-6z4 + 3a-6z6 + 5a-5z-1 - 19a-5z + 31a-5z3 - 23a-5z5 + 5a-5z7 - 4a-4z-2 + 13a-4 - 21a-4z2 + 27a-4z4 - 19a-4z6 + 4a-4z8 + 9a-3z-1 - 35a-3z + 50a-3z3 - 25a-3z5 + a-3z7 + a-3z9 - 5a-2z-2 + 22a-2 - 46a-2z2 + 55a-2z4 - 29a-2z6 + 5a-2z8 + 5a-1z-1 - 19a-1z + 18a-1z3 - a-1z5 - 4a-1z7 + a-1z9 - 2z-2 + 11 - 21z2 + 18z4 - 7z6 + z8

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 15         1
j = 13        1 
j = 11       32 
j = 9      221 
j = 7     33   
j = 5    221   
j = 3   24     
j = 1  21      
j = -1 14       
j = -3          
j = -51         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 417]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 417]]
Out[4]=   
PD[X[8, 1, 9, 2], X[10, 3, 11, 4], X[15, 21, 16, 20], X[5, 15, 6, 14], 
 
>   X[13, 5, 14, 4], X[19, 7, 20, 12], X[11, 19, 12, 18], X[17, 13, 18, 22], 
 
>   X[21, 17, 22, 16], X[2, 7, 3, 8], X[6, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, 5, -4, -11}, {10, -1, 11, -2, -7, 6}, 
 
>   {-5, 4, -3, 9, -8, 7, -6, 3, -9, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
     -2   1            2      3      4      5      6    7
4 + q   - - - 3 q + 5 q  - 4 q  + 4 q  - 3 q  + 2 q  - q
          q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -6    -4   3       2      4      6      8    10      12    14      16    26
5 + q   + q   + -- + 6 q  + 7 q  + 5 q  + 4 q  + q   - 2 q   - q   - 2 q   - q
                 2
                q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 417]][a, z]
Out[8]=   
                                                                2      2
     -8   2    4    10   2      1       4       5        2   4 z    2 z
5 - a   + -- + -- - -- + -- - ----- + ----- - ----- + 4 z  + ---- - ---- - 
           6    4    2    2    6  2    4  2    2  2            6      4
          a    a    a    z    a  z    a  z    a  z            a      a
 
       2         4      4      4    6    6
    9 z     4   z    4 z    5 z    z    z
>   ---- + z  + -- - ---- - ---- - -- - --
      2          6     4      2     4    2
     a          a     a      a     a    a
In[9]:=
Kauffman[Link[11, NonAlternating, 417]][a, z]
Out[9]=   
      -8   13   22   2      1       4       5      1      5      9      5
11 - a   + -- + -- - -- - ----- - ----- - ----- + ---- + ---- + ---- + --- + 
            4    2    2    6  2    4  2    2  2    7      5      3     a z
           a    a    z    a  z    a  z    a  z    a  z   a  z   a  z
 
                                               2      2       2       2    3
    z    2 z   19 z   35 z   19 z       2   2 z    6 z    21 z    46 z    z
>   -- - --- - ---- - ---- - ---- - 21 z  + ---- + ---- - ----- - ----- - -- + 
     9    7      5      3     a               8      6      4       2      7
    a    a      a      a                     a      a      a       a      a
 
        3       3       3               4       4       4    5       5
    31 z    50 z    18 z        4   10 z    27 z    55 z    z    23 z
>   ----- + ----- + ----- + 18 z  - ----- + ----- + ----- + -- - ----- - 
      5       3       a               6       4       2      7     5
     a       a                       a       a       a      a     a
 
        5    5             6       6       6      7    7      7           8
    25 z    z       6   3 z    19 z    29 z    5 z    z    4 z     8   4 z
>   ----- - -- - 7 z  + ---- - ----- - ----- + ---- + -- - ---- + z  + ---- + 
      3     a             6      4       2       5     3    a            4
     a                   a      a       a       a     a                 a
 
       8    9    9
    5 z    z    z
>   ---- + -- + --
      2     3   a
     a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                                 3
   3      5     1      1      4     2 q   q   2 q       5        7      5  2
4 q  + 2 q  + ----- + ---- + ---- + --- + - + ---- + 2 q  t + 3 q  t + q  t  + 
               5  4      3      2    2    t    t
              q  t    q t    q t    t
 
       7  2      9  2      9  3      11  3    9  4      11  4    13  4    15  5
>   3 q  t  + 2 q  t  + 2 q  t  + 3 q   t  + q  t  + 2 q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n417
L11n416
L11n416
L11n418
L11n418