PD Presentation: |
X12,1,13,2 X2,13,3,14 X14,3,15,4 X16,5,17,6 X22,7,11,8 X9,18,10,19 X17,20,18,21 X19,10,20,1 X8,11,9,12 X4,15,5,16 X6,21,7,22 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 254]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 254]] |
Out[4]= | PD[X[12, 1, 13, 2], X[2, 13, 3, 14], X[14, 3, 15, 4], X[16, 5, 17, 6],
> X[22, 7, 11, 8], X[9, 18, 10, 19], X[17, 20, 18, 21], X[19, 10, 20, 1],
> X[8, 11, 9, 12], X[4, 15, 5, 16], X[6, 21, 7, 22]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -2, 3, -10, 4, -11, 5, -9, -6, 8},
> {9, -1, 2, -3, 10, -4, -7, 6, -8, 7, 11, -5}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(27/2) -(25/2) 2 2 -(19/2) -(17/2) -(13/2) -(9/2)
-q + q - ----- + ----- - q + q - q - q
23/2 21/2
q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -44 -42 -40 2 2 2 -28 -24 2 2 -18 -16
-q + q + q + --- + --- - --- - q + q + --- + --- + q + q
38 36 30 22 20
q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 254]][a, z] |
Out[8]= | 9 11
a a 9 11 13 9 3 11 3 13 3
-(--) + --- - 17 a z + 14 a z - 2 a z - 36 a z + 19 a z - a z -
z z
9 5 11 5 9 7 11 7 9 9
> 28 a z + 8 a z - 9 a z + a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 254]][a, z] |
Out[9]= | 9 11
10 a a 9 11 13 15 17
-a + -- + --- - 17 a z - 15 a z - 2 a z - 2 a z + 2 a z +
z z
10 2 12 2 16 2 9 3 11 3 15 3 17 3
> 14 a z + 13 a z + a z + 36 a z + 33 a z + 2 a z - a z -
10 4 12 4 14 4 16 4 9 5 11 5 15 5
> 19 a z - 19 a z - a z - a z - 28 a z - 27 a z - a z +
10 6 12 6 9 7 11 7 10 8 12 8 9 9 11 9
> 8 a z + 8 a z + 9 a z + 9 a z - a z - a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -10 -8 1 1 1 1 1 1 1
q + q + ------- + ------- + ------ + ------ + ------ + ------ + ------ +
28 10 26 10 26 9 24 8 22 8 22 7 20 7
q t q t q t q t q t q t q t
1 1 1 1 1 1 1 1
> ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
20 6 18 6 20 5 18 5 16 5 16 4 14 4 16 3
q t q t q t q t q t q t q t q t
1
> ------
12 2
q t |