© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n254
L11n254
L11n256
L11n256
L11n255
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n255

Visit L11n255's page at Knotilus!

Acknowledgement

L11n255 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,11,4,10 X11,16,12,17 X21,18,22,19 X13,20,14,21 X19,12,20,13 X17,22,18,9 X15,8,16,5 X7,14,8,15 X2536 X9,1,10,4

Gauss Code: {{1, -10, -2, 11}, {10, -1, -9, 8}, {-11, 2, -3, 6, -5, 9, -8, 3, -7, 4, -6, 5, -4, 7}}

Jones Polynomial: - 3q-9 + 6q-8 - 9q-7 + 11q-6 - 11q-5 + 12q-4 - 7q-3 + 6q-2 - 2q-1 + 1

A2 (sl(3)) Invariant: - q-32 - q-30 - 4q-28 - 2q-26 - q-24 - 3q-22 + 3q-20 + q-18 + 6q-16 + 7q-14 + 5q-12 + 8q-10 + 2q-8 + 4q-6 + 2q-4 + 1

HOMFLY-PT Polynomial: a2z-2 + 3a2 + 3a2z2 + a2z4 - a4z-2 - 2a4 - 3a4z2 - 3a4z4 - a4z6 - 2a6z-2 - 5a6 - 4a6z2 - 3a6z4 - a6z6 + 3a8z-2 + 5a8 + 3a8z2 + a8z4 - a10z-2 - a10

Kauffman Polynomial: a2z-2 - 4a2 + 6a2z2 - 4a2z4 + a2z6 - 2a3z-1 + 4a3z + a3z3 - 5a3z5 + 2a3z7 + a4z-2 - 3a4 + 9a4z2 - 9a4z4 - a4z6 + 2a4z8 + 2a5z-1 - 10a5z + 18a5z3 - 19a5z5 + 5a5z7 + a5z9 - 2a6z-2 + 4a6 - 3a6z2 + 8a6z4 - 15a6z6 + 7a6z8 + 10a7z-1 - 34a7z + 46a7z3 - 34a7z5 + 10a7z7 + a7z9 - 3a8z-2 + 5a8 - 8a8z2 + 13a8z4 - 10a8z6 + 5a8z8 + 8a9z-1 - 27a9z + 35a9z3 - 20a9z5 + 7a9z7 - a10z-2 + a10 - 2a10z2 + 3a10z6 + 2a11z-1 - 7a11z + 6a11z3

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 1         1
j = -1        1 
j = -3       51 
j = -5      54  
j = -7     72   
j = -9    45    
j = -11   77     
j = -13  35      
j = -15 36       
j = -17 3        
j = -193         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 255]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 255]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 11, 4, 10], X[11, 16, 12, 17], X[21, 18, 22, 19], 
 
>   X[13, 20, 14, 21], X[19, 12, 20, 13], X[17, 22, 18, 9], X[15, 8, 16, 5], 
 
>   X[7, 14, 8, 15], X[2, 5, 3, 6], X[9, 1, 10, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {10, -1, -9, 8}, 
 
>   {-11, 2, -3, 6, -5, 9, -8, 3, -7, 4, -6, 5, -4, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
    3    6    9    11   11   12   7    6    2
1 - -- + -- - -- + -- - -- + -- - -- + -- - -
     9    8    7    6    5    4    3    2   q
    q    q    q    q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -32    -30    4     2     -24    3     3     -18    6     7     5     8
1 - q    - q    - --- - --- - q    - --- + --- + q    + --- + --- + --- + --- + 
                   28    26           22    20           16    14    12    10
                  q     q            q     q            q     q     q     q
 
    2    4    2
>   -- + -- + --
     8    6    4
    q    q    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 255]][a, z]
Out[8]=   
                                   2    4      6      8    10
   2      4      6      8    10   a    a    2 a    3 a    a        2  2
3 a  - 2 a  - 5 a  + 5 a  - a   + -- - -- - ---- + ---- - --- + 3 a  z  - 
                                   2    2     2      2     2
                                  z    z     z      z     z
 
       4  2      6  2      8  2    2  4      4  4      6  4    8  4    4  6
>   3 a  z  - 4 a  z  + 3 a  z  + a  z  - 3 a  z  - 3 a  z  + a  z  - a  z  - 
 
     6  6
>   a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 255]][a, z]
Out[9]=   
                                    2    4      6      8    10      3      5
    2      4      6      8    10   a    a    2 a    3 a    a     2 a    2 a
-4 a  - 3 a  + 4 a  + 5 a  + a   + -- + -- - ---- - ---- - --- - ---- + ---- + 
                                    2    2     2      2     2     z      z
                                   z    z     z      z     z
 
        7      9      11
    10 a    8 a    2 a        3         5         7         9        11
>   ----- + ---- + ----- + 4 a  z - 10 a  z - 34 a  z - 27 a  z - 7 a   z + 
      z      z       z
 
       2  2      4  2      6  2      8  2      10  2    3  3       5  3
>   6 a  z  + 9 a  z  - 3 a  z  - 8 a  z  - 2 a   z  + a  z  + 18 a  z  + 
 
        7  3       9  3      11  3      2  4      4  4      6  4       8  4
>   46 a  z  + 35 a  z  + 6 a   z  - 4 a  z  - 9 a  z  + 8 a  z  + 13 a  z  - 
 
       3  5       5  5       7  5       9  5    2  6    4  6       6  6
>   5 a  z  - 19 a  z  - 34 a  z  - 20 a  z  + a  z  - a  z  - 15 a  z  - 
 
        8  6      10  6      3  7      5  7       7  7      9  7      4  8
>   10 a  z  + 3 a   z  + 2 a  z  + 5 a  z  + 10 a  z  + 7 a  z  + 2 a  z  + 
 
       6  8      8  8    5  9    7  9
>   7 a  z  + 5 a  z  + a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
4    5      3        3        3        6        3        5        7
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 5    3    19  7    17  6    15  6    15  5    13  5    13  4    11  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      7        4       5       7      2      5     t    t      2
>   ------ + ----- + ----- + ----- + ---- + ---- + -- + - + q t
     11  3    9  3    9  2    7  2    7      5      3   q
    q   t    q  t    q  t    q  t    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n255
L11n254
L11n254
L11n256
L11n256