PD Presentation: |
X12,1,13,2 X14,3,15,4 X9,18,10,19 X5,16,6,17 X22,7,11,8 X6,21,7,22 X20,15,21,16 X17,8,18,9 X19,4,20,5 X2,11,3,12 X10,13,1,14 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 253]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 253]] |
Out[4]= | PD[X[12, 1, 13, 2], X[14, 3, 15, 4], X[9, 18, 10, 19], X[5, 16, 6, 17],
> X[22, 7, 11, 8], X[6, 21, 7, 22], X[20, 15, 21, 16], X[17, 8, 18, 9],
> X[19, 4, 20, 5], X[2, 11, 3, 12], X[10, 13, 1, 14]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, 2, 9, -4, -6, 5, 8, -3, -11},
> {10, -1, 11, -2, 7, 4, -8, 3, -9, -7, 6, -5}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(25/2) -(17/2) -(15/2) -(13/2) 2 -(9/2) -(7/2)
-q + q - q + q - ----- + q - q
11/2
q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -42 -40 2 -36 2 -28 -24 -20 -18 -16 -12
-q + q + --- + q + --- - q + q + q + q + q + q
38 34
q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 253]][a, z] |
Out[8]= | 9 11
a a 7 9 11 13 7 3 9 3
-(--) + --- - 5 a z - 6 a z + 7 a z - a z - 10 a z - 10 a z +
z z
11 3 7 5 9 5 11 5 7 7 9 7
> 6 a z - 6 a z - 6 a z + a z - a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 253]][a, z] |
Out[9]= | 9 11
10 a a 7 9 11 13 15 10 2
-a + -- + --- + 5 a z - 7 a z - 9 a z - 2 a z - 5 a z + 9 a z +
z z
12 2 14 2 7 3 9 3 11 3 13 3
> 10 a z + a z - 10 a z + 11 a z + 18 a z + 2 a z +
15 3 8 4 10 4 12 4 7 5 9 5
> 5 a z - 5 a z - 19 a z - 14 a z + 6 a z - 11 a z -
11 5 15 5 8 6 10 6 12 6 7 7 9 7
> 16 a z - a z + 5 a z + 12 a z + 7 a z - a z + 6 a z +
11 7 8 8 10 8 12 8 9 9 11 9
> 7 a z - a z - 2 a z - a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -8 -6 1 1 1 1 1 2 2
q + q + ------- + ------- + ------ + ------ + ------ + ------ + ------ +
26 10 24 10 22 8 22 7 18 7 18 6 18 5
q t q t q t q t q t q t q t
1 1 1 2 1 1 1 1
> ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
16 5 14 5 16 4 14 4 12 4 14 3 12 3 12 2
q t q t q t q t q t q t q t q t
1 1
> ------ + ----
10 2 8
q t q t |