PD Presentation: |
X10,1,11,2 X2,11,3,12 X12,3,13,4 X5,14,6,15 X22,18,9,17 X19,5,20,4 X6,22,7,21 X16,7,17,8 X8,9,1,10 X13,18,14,19 X20,15,21,16 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 209]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 209]] |
Out[4]= | PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[5, 14, 6, 15],
> X[22, 18, 9, 17], X[19, 5, 20, 4], X[6, 22, 7, 21], X[16, 7, 17, 8],
> X[8, 9, 1, 10], X[13, 18, 14, 19], X[20, 15, 21, 16]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -2, 3, 6, -4, -7, 8, -9},
> {9, -1, 2, -3, -10, 4, 11, -8, 5, 10, -6, -11, 7, -5}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) 2 3 5 6 6 6 3 3 1
-q + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + -------
17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -28 -24 -22 2 -16 3 2 3 3 -4 -2
q + q - q - --- - q + --- + --- + --- + -- + q - q
20 14 12 10 8
q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 209]][a, z] |
Out[8]= | 3 5
a a 3 5 7 3 3 5 3 7 3 3 5
-(--) + -- + a z - 7 a z + 4 a z + 3 a z - 12 a z + 4 a z + a z -
z z
5 5 7 5 5 7
> 6 a z + a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 209]][a, z] |
Out[9]= | 3 5
4 a a 3 5 7 11 2 2 4 2
a - -- - -- - 2 a z - 6 a z - 3 a z - a z + 2 a z + 6 a z +
z z
6 2 8 2 10 2 3 3 5 3 7 3 9 3
> 12 a z + 5 a z - 3 a z + 7 a z + 15 a z + 3 a z - 2 a z +
11 3 2 4 4 4 6 4 8 4 10 4 3 5
> 3 a z - a z - 9 a z - 24 a z - 10 a z + 6 a z - 3 a z -
5 5 7 5 9 5 11 5 4 6 6 6 8 6
> 14 a z - 5 a z + 5 a z - a z + 4 a z + 13 a z + 7 a z -
10 6 5 7 7 7 9 7 4 8 6 8 8 8
> 2 a z + 5 a z + 3 a z - 2 a z - a z - 3 a z - 2 a z -
5 9 7 9
> a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 2 1 1 1 2 1 3 2
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 20 8 18 7 16 7 16 6 14 6 14 5 12 5
q q q t q t q t q t q t q t q t
3 4 4 2 2 4 1 2
> ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + t
12 4 10 4 10 3 8 3 8 2 6 2 6 4
q t q t q t q t q t q t q t q t |