PD Presentation: |
X10,1,11,2 X2,11,3,12 X12,3,13,4 X5,14,6,15 X22,18,9,17 X4,19,5,20 X21,6,22,7 X16,7,17,8 X8,9,1,10 X18,14,19,13 X15,21,16,20 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 210]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 210]] |
Out[4]= | PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[5, 14, 6, 15],
> X[22, 18, 9, 17], X[4, 19, 5, 20], X[21, 6, 22, 7], X[16, 7, 17, 8],
> X[8, 9, 1, 10], X[18, 14, 19, 13], X[15, 21, 16, 20]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -2, 3, -6, -4, 7, 8, -9},
> {9, -1, 2, -3, 10, 4, -11, -8, 5, -10, 6, 11, -7, -5}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) -(17/2) 2 3 4 4 4 2 2
-q + q - ----- + ----- - ----- + ---- - ---- + ---- - ---- +
15/2 13/2 11/2 9/2 7/2 5/2 3/2
q q q q q q q
1
> -------
Sqrt[q] |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -28 -26 2 -22 -18 2 -12 -10 -8 -6 -2
q + q + --- + q + q + --- + q + q + q - q - q
24 14
q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 210]][a, z] |
Out[8]= | 3 5 7
a 3 a 2 a 3 5 7 3 3 5 3 7 3
-- - ---- + ---- + 4 a z - 15 a z + 7 a z + 4 a z - 17 a z + 5 a z +
z z z
3 5 5 5 7 5 5 7
> a z - 7 a z + a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 210]][a, z] |
Out[9]= | 3 5 7
2 4 6 a 3 a 2 a 3 5 7 9
-a - 3 a - 3 a + -- + ---- + ---- - 4 a z - 18 a z - 10 a z + a z -
z z z
11 2 2 4 2 6 2 8 2 10 2 3 3
> 3 a z + 3 a z + 14 a z + 15 a z + 3 a z - a z + 6 a z +
5 3 7 3 9 3 11 3 2 4 4 4 6 4
> 28 a z + 16 a z - 2 a z + 4 a z - a z - 15 a z - 23 a z -
8 4 10 4 3 5 5 5 7 5 9 5 11 5
> 6 a z + 3 a z - 2 a z - 21 a z - 15 a z + 3 a z - a z +
4 6 6 6 8 6 10 6 5 7 7 7 9 7 4 8
> 6 a z + 11 a z + 4 a z - a z + 7 a z + 6 a z - a z - a z -
6 8 8 8 5 9 7 9
> 2 a z - a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 -2 1 1 1 1 1 2 1
-- + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 20 8 18 8 18 7 16 6 14 6 14 5 12 5
q q t q t q t q t q t q t q t
2 2 2 2 2 2 2
> ------ + ------ + ------ + ----- + ----- + ----- + ---- + t
12 4 10 4 10 3 8 3 8 2 6 2 4
q t q t q t q t q t q t q t |