© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n207
L11n207
L11n209
L11n209
L11n208
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n208

Visit L11n208's page at Knotilus!

Acknowledgement

L11n208 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X5,14,6,15 X22,18,9,17 X19,5,20,4 X21,6,22,7 X7,17,8,16 X8,9,1,10 X18,14,19,13 X15,21,16,20

Gauss Code: {{1, -2, 3, 6, -4, 7, -8, -9}, {9, -1, 2, -3, 10, 4, -11, 8, 5, -10, -6, 11, -7, -5}}

Jones Polynomial: - q-11/2 + q-9/2 - q-7/2 + q-5/2 - 2q-3/2 + q-1/2 - 2q1/2 + q3/2 - q5/2 + q7/2

A2 (sl(3)) Invariant: q-16 + q-14 + q-12 + q-10 + q-8 + q-6 + q-4 + 2q-2 + 2 + q2 - q6 - q8 - q10

HOMFLY-PT Polynomial: a-1z-1 + 6a-1z + 5a-1z3 + a-1z5 - 3az-1 - 14az - 16az3 - 7az5 - az7 + 2a3z-1 + 6a3z + 5a3z3 + a3z5

Kauffman Polynomial: - a-2 + 10a-2z2 - 15a-2z4 + 7a-2z6 - a-2z8 + a-1z-1 - 7a-1z + 15a-1z3 - 16a-1z5 + 7a-1z7 - a-1z9 - 3 + 18z2 - 26z4 + 13z6 - 2z8 + 3az-1 - 16az + 24az3 - 18az5 + 7az7 - az9 - 3a2 + 11a2z2 - 12a2z4 + 6a2z6 - a2z8 + 2a3z-1 - 7a3z + 8a3z3 - 2a3z5 + 2a4z2 - a4z4 + a5z - a5z3 - a6z2 - a7z

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 8         1
j = 6          
j = 4       11 
j = 2      1   
j = 0      1   
j = -2    21    
j = -4    1     
j = -6  11      
j = -8          
j = -1011        
j = -121         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 208]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 208]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[5, 14, 6, 15], 
 
>   X[22, 18, 9, 17], X[19, 5, 20, 4], X[21, 6, 22, 7], X[7, 17, 8, 16], 
 
>   X[8, 9, 1, 10], X[18, 14, 19, 13], X[15, 21, 16, 20]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, 6, -4, 7, -8, -9}, 
 
>   {9, -1, 2, -3, 10, 4, -11, 8, 5, -10, -6, 11, -7, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(11/2)    -(9/2)    -(7/2)    -(5/2)    2        1                   3/2
-q        + q       - q       + q       - ---- + ------- - 2 Sqrt[q] + q    - 
                                           3/2   Sqrt[q]
                                          q
 
     5/2    7/2
>   q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -16    -14    -12    -10    -8    -6    -4   2     2    6    8    10
2 + q    + q    + q    + q    + q   + q   + q   + -- + q  - q  - q  - q
                                                   2
                                                  q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 208]][a, z]
Out[8]=   
               3                              3                        5
 1    3 a   2 a    6 z               3     5 z          3      3  3   z
--- - --- + ---- + --- - 14 a z + 6 a  z + ---- - 16 a z  + 5 a  z  + -- - 
a z    z     z      a                       a                         a
 
         5    3  5      7
>   7 a z  + a  z  - a z
In[9]:=
Kauffman[Link[11, NonAlternating, 208]][a, z]
Out[9]=   
                                 3
      -2      2    1    3 a   2 a    7 z               3      5      7
-3 - a   - 3 a  + --- + --- + ---- - --- - 16 a z - 7 a  z + a  z - a  z + 
                  a z    z     z      a
 
                2                                    3
        2   10 z        2  2      4  2    6  2   15 z          3      3  3
>   18 z  + ----- + 11 a  z  + 2 a  z  - a  z  + ----- + 24 a z  + 8 a  z  - 
              2                                    a
             a
 
                        4                          5
     5  3       4   15 z        2  4    4  4   16 z          5      3  5
>   a  z  - 26 z  - ----- - 12 a  z  - a  z  - ----- - 18 a z  - 2 a  z  + 
                      2                          a
                     a
 
               6                7                    8            9
        6   7 z       2  6   7 z         7      8   z     2  8   z       9
>   13 z  + ---- + 6 a  z  + ---- + 7 a z  - 2 z  - -- - a  z  - -- - a z
              2               a                      2           a
             a                                      a
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4   2      1        1        1        1      1     t     2    2  2    4  3
q   + -- + ------ + ------ + ------ + ----- + ---- + -- + t  + q  t  + q  t  + 
       2    12  4    10  4    10  3    6  2    6      2
      q    q   t    q   t    q   t    q  t    q  t   q
 
     4  4    8  5
>   q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n208
L11n207
L11n207
L11n209
L11n209