PD Presentation: |
X10,1,11,2 X2,11,3,12 X12,3,13,4 X5,14,6,15 X17,22,18,9 X19,5,20,4 X21,6,22,7 X7,17,8,16 X8,9,1,10 X13,18,14,19 X15,21,16,20 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 207]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 207]] |
Out[4]= | PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[5, 14, 6, 15],
> X[17, 22, 18, 9], X[19, 5, 20, 4], X[21, 6, 22, 7], X[7, 17, 8, 16],
> X[8, 9, 1, 10], X[13, 18, 14, 19], X[15, 21, 16, 20]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -2, 3, 6, -4, 7, -8, -9},
> {9, -1, 2, -3, -10, 4, -11, 8, -5, 10, -6, 11, -7, 5}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) 3 6 9 10 10 10 6 4 1
-q + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + -------
17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -28 -26 2 -22 2 -18 2 4 -12 3 3 -6
q - q + --- - q - --- + q - --- + --- + q + --- + -- - q +
24 20 16 14 10 8
q q q q q q
2 -2
> -- - q
4
q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 207]][a, z] |
Out[8]= | 3 5
a a 5 7 3 3 5 3 7 3 3 5 5 5
-(--) + -- - 5 a z + 3 a z + 2 a z - 9 a z + 3 a z + a z - 5 a z +
z z
7 5 5 7
> a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 207]][a, z] |
Out[9]= | 3 5
4 a a 3 5 7 9 11 2 2 4 2
a - -- - -- - a z - 5 a z - 4 a z - a z - a z + a z + 2 a z +
z z
6 2 8 2 10 2 3 3 5 3 7 3 11 3
> 5 a z + a z - 3 a z + 5 a z + 13 a z + 6 a z + 2 a z -
2 4 4 4 6 4 8 4 10 4 3 5 5 5
> a z - 3 a z - 6 a z + 2 a z + 6 a z - 4 a z - 9 a z +
7 5 9 5 11 5 6 6 8 6 10 6 5 7
> 2 a z + 6 a z - a z + 5 a z + 2 a z - 3 a z + a z -
7 7 9 7 4 8 6 8 8 8 5 9 7 9
> 3 a z - 4 a z - a z - 4 a z - 3 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 3 1 2 1 4 2 5 4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 20 8 18 7 16 7 16 6 14 6 14 5 12 5
q q q t q t q t q t q t q t q t
5 6 6 4 4 6 2 4
> ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + t
12 4 10 4 10 3 8 3 8 2 6 2 6 4
q t q t q t q t q t q t q t q t |