© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n202
L11n202
L11n204
L11n204
L11n203
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n203

Visit L11n203's page at Knotilus!

Acknowledgement

L11n203 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X16,8,17,7 X18,12,19,11 X19,3,20,2 X3,12,4,13 X13,21,14,20 X5,15,6,14 X6,9,7,10 X22,16,9,15 X8,18,1,17 X21,4,22,5

Gauss Code: {{1, 4, -5, 11, -7, -8, 2, -10}, {8, -1, 3, 5, -6, 7, 9, -2, 10, -3, -4, 6, -11, -9}}

Jones Polynomial: - q-3/2 + 2q-1/2 - 5q1/2 + 6q3/2 - 7q5/2 + 6q7/2 - 6q9/2 + 4q11/2 - 2q13/2 + q15/2

A2 (sl(3)) Invariant: q-4 + 3 + q2 + q4 + 2q6 + 3q10 + q14 - 2q18 - q22

HOMFLY-PT Polynomial: a-5z-1 + 5a-5z + 4a-5z3 + a-5z5 - 3a-3z-1 - 11a-3z - 13a-3z3 - 6a-3z5 - a-3z7 + 2a-1z-1 + 6a-1z + 4a-1z3 + a-1z5

Kauffman Polynomial: - 4a-8z2 + 4a-8z4 - a-8z6 + a-7z - 6a-7z3 + 7a-7z5 - 2a-7z7 - a-6 + 4a-6z2 - 5a-6z4 + 6a-6z6 - 2a-6z8 + a-5z-1 - 6a-5z + 11a-5z3 - 4a-5z5 + 2a-5z7 - a-5z9 - 3a-4 + 12a-4z2 - 13a-4z4 + 9a-4z6 - 3a-4z8 + 3a-3z-1 - 15a-3z + 24a-3z3 - 15a-3z5 + 4a-3z7 - a-3z9 - 3a-2 + 5a-2z2 - 6a-2z4 + 2a-2z6 - a-2z8 + 2a-1z-1 - 7a-1z + 6a-1z3 - 4a-1z5 + z2 - 2z4 + az - az3

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 16         1
j = 14        1 
j = 12       31 
j = 10      31  
j = 8     33   
j = 6    43    
j = 4   23     
j = 2  34      
j = 0 14       
j = -2 1        
j = -41         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 203]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 203]]
Out[4]=   
PD[X[10, 1, 11, 2], X[16, 8, 17, 7], X[18, 12, 19, 11], X[19, 3, 20, 2], 
 
>   X[3, 12, 4, 13], X[13, 21, 14, 20], X[5, 15, 6, 14], X[6, 9, 7, 10], 
 
>   X[22, 16, 9, 15], X[8, 18, 1, 17], X[21, 4, 22, 5]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -5, 11, -7, -8, 2, -10}, 
 
>   {8, -1, 3, 5, -6, 7, 9, -2, 10, -3, -4, 6, -11, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(3/2)      2                     3/2      5/2      7/2      9/2      11/2
-q       + ------- - 5 Sqrt[q] + 6 q    - 7 q    + 6 q    - 6 q    + 4 q     - 
           Sqrt[q]
 
       13/2    15/2
>   2 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -4    2    4      6      10    14      18    22
3 + q   + q  + q  + 2 q  + 3 q   + q   - 2 q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 203]][a, z]
Out[8]=   
                                          3       3      3    5      5    5    7
 1      3      2    5 z   11 z   6 z   4 z    13 z    4 z    z    6 z    z    z
---- - ---- + --- + --- - ---- + --- + ---- - ----- + ---- + -- - ---- + -- - --
 5      3     a z    5      3     a      5      3      a      5     3    a     3
a  z   a  z         a      a            a      a             a     a          a
In[9]:=
Kauffman[Link[11, NonAlternating, 203]][a, z]
Out[9]=   
                                                                           2
  -6   3    3     1      3      2    z    6 z   15 z   7 z          2   4 z
-a   - -- - -- + ---- + ---- + --- + -- - --- - ---- - --- + a z + z  - ---- + 
        4    2    5      3     a z    7    5      3     a                 8
       a    a    a  z   a  z         a    a      a                       a
 
       2       2      2      3       3       3      3                    4
    4 z    12 z    5 z    6 z    11 z    24 z    6 z       3      4   4 z
>   ---- + ----- + ---- - ---- + ----- + ----- + ---- - a z  - 2 z  + ---- - 
      6      4       2      7      5       3      a                     8
     a      a       a      a      a       a                            a
 
       4       4      4      5      5       5      5    6      6      6
    5 z    13 z    6 z    7 z    4 z    15 z    4 z    z    6 z    9 z
>   ---- - ----- - ---- + ---- - ---- - ----- - ---- - -- + ---- + ---- + 
      6      4       2      7      5      3      a      8     6      4
     a      a       a      a      a      a             a     a      a
 
       6      7      7      7      8      8    8    9    9
    2 z    2 z    2 z    4 z    2 z    3 z    z    z    z
>   ---- - ---- + ---- + ---- - ---- - ---- - -- - -- - --
      2      7      5      3      6      4     2    5    3
     a      a      a      a      a      a     a    a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1     1    1        2        4        4  2      6  2      6  3
4 + 3 q  + ----- + - + ---- + 4 q  t + 2 q  t + 3 q  t  + 4 q  t  + 3 q  t  + 
            4  2   t    2
           q  t        q  t
 
       8  3      8  4      10  4    10  5      12  5    12  6    14  6    16  7
>   3 q  t  + 3 q  t  + 3 q   t  + q   t  + 3 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n203
L11n202
L11n202
L11n204
L11n204