© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n201
L11n201
L11n203
L11n203
L11n202
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n202

Visit L11n202's page at Knotilus!

Acknowledgement

L11n202 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X16,8,17,7 X11,18,12,19 X19,3,20,2 X3,12,4,13 X13,21,14,20 X5,15,6,14 X6,9,7,10 X15,22,16,9 X8,18,1,17 X21,4,22,5

Gauss Code: {{1, 4, -5, 11, -7, -8, 2, -10}, {8, -1, -3, 5, -6, 7, -9, -2, 10, 3, -4, 6, -11, 9}}

Jones Polynomial: - q-11/2 + 2q-9/2 - 2q-7/2 + 3q-5/2 - 4q-3/2 + 3q-1/2 - 4q1/2 + 2q3/2 - 2q5/2 + q7/2

A2 (sl(3)) Invariant: q-16 - q-10 - q-8 + 3q-2 + 3 + 3q2 + 2q4 - q10

HOMFLY-PT Polynomial: - a-1z-1 + 3a-1z + 4a-1z3 + a-1z5 + az-1 - 6az - 11az3 - 6az5 - az7 + 3a3z + 4a3z3 + a3z5

Kauffman Polynomial: - a-4z2 + a-3z - 2a-3z3 + a-2z2 - 2a-2z4 - a-1z-1 - 2a-1z + 6a-1z3 - 3a-1z5 + 1 + 6z2 - 7z4 + 4z6 - z8 - az-1 - 6az + 15az3 - 11az5 + 5az7 - az9 + 11a2z2 - 22a2z4 + 15a2z6 - 3a2z8 - 2a3z + a3z3 - 3a3z5 + 4a3z7 - a3z9 + 7a4z2 - 17a4z4 + 11a4z6 - 2a4z8 + a5z - 6a5z3 + 5a5z5 - a5z7

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 8         1
j = 6        1 
j = 4       11 
j = 2      31  
j = 0     23   
j = -2    21    
j = -4   12     
j = -6  12      
j = -8 11       
j = -10 1        
j = -121         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 202]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 202]]
Out[4]=   
PD[X[10, 1, 11, 2], X[16, 8, 17, 7], X[11, 18, 12, 19], X[19, 3, 20, 2], 
 
>   X[3, 12, 4, 13], X[13, 21, 14, 20], X[5, 15, 6, 14], X[6, 9, 7, 10], 
 
>   X[15, 22, 16, 9], X[8, 18, 1, 17], X[21, 4, 22, 5]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -5, 11, -7, -8, 2, -10}, 
 
>   {8, -1, -3, 5, -6, 7, -9, -2, 10, 3, -4, 6, -11, 9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(11/2)    2      2      3      4        3                     3/2      5/2
-q        + ---- - ---- + ---- - ---- + ------- - 4 Sqrt[q] + 2 q    - 2 q    + 
             9/2    7/2    5/2    3/2   Sqrt[q]
            q      q      q      q
 
     7/2
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -16    -10    -8   3       2      4    10
3 + q    - q    - q   + -- + 3 q  + 2 q  - q
                         2
                        q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 202]][a, z]
Out[8]=   
                                       3                        5
   1     a   3 z              3     4 z          3      3  3   z         5
-(---) + - + --- - 6 a z + 3 a  z + ---- - 11 a z  + 4 a  z  + -- - 6 a z  + 
  a z    z    a                      a                         a
 
     3  5      7
>   a  z  - a z
In[9]:=
Kauffman[Link[11, NonAlternating, 202]][a, z]
Out[9]=   
                                                         2    2
     1    a   z    2 z              3      5        2   z    z        2  2
1 - --- - - + -- - --- - 6 a z - 2 a  z + a  z + 6 z  - -- + -- + 11 a  z  + 
    a z   z    3    a                                    4    2
              a                                         a    a
 
                 3      3                                         4
       4  2   2 z    6 z          3    3  3      5  3      4   2 z
>   7 a  z  - ---- + ---- + 15 a z  + a  z  - 6 a  z  - 7 z  - ---- - 
                3     a                                          2
               a                                                a
 
                             5
        2  4       4  4   3 z          5      3  5      5  5      6
>   22 a  z  - 17 a  z  - ---- - 11 a z  - 3 a  z  + 5 a  z  + 4 z  + 
                           a
 
        2  6       4  6        7      3  7    5  7    8      2  8      4  8
>   15 a  z  + 11 a  z  + 5 a z  + 4 a  z  - a  z  - z  - 3 a  z  - 2 a  z  - 
 
       9    3  9
>   a z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1        1        1       1       1       2       1       2
3 + 3 q  + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
            12  6    10  5    8  5    8  4    6  4    6  3    4  3    4  2
           q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      2     2    1      2      4      4  2    6  2    8  3
>   ----- + - + ---- + q  t + q  t + q  t  + q  t  + q  t
     2  2   t    2
    q  t        q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n202
L11n201
L11n201
L11n203
L11n203