PD Presentation: |
X8192 X12,3,13,4 X13,21,14,20 X16,9,17,10 X10,19,11,20 X15,7,16,22 X21,15,22,14 X18,5,19,6 X2738 X4,11,5,12 X6,17,1,18 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 196]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 196]] |
Out[4]= | PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[13, 21, 14, 20], X[16, 9, 17, 10],
> X[10, 19, 11, 20], X[15, 7, 16, 22], X[21, 15, 22, 14], X[18, 5, 19, 6],
> X[2, 7, 3, 8], X[4, 11, 5, 12], X[6, 17, 1, 18]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 2, -10, 8, -11},
> {9, -1, 4, -5, 10, -2, -3, 7, -6, -4, 11, -8, 5, 3, -7, 6}] |
In[6]:= | Jones[L][q] |
Out[6]= | -2 4 8 10 12 12 10 3/2 5/2
----- + ----- - ---- + ---- - ---- + ---- - ------- + 7 Sqrt[q] - 4 q + q
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -22 3 2 3 2 2 -8 -4 2 2 6 8
3 + q + --- + --- + --- - --- + --- - q + q - -- - 2 q + 2 q - q
20 16 14 12 10 2
q q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 196]][a, z] |
Out[8]= | 5 7 3
a a 3 5 z 3 3 3 5 3 5 3 5
-(--) + -- - a z - a z - a z + -- - a z - a z + a z - a z - a z
z z a |
In[9]:= | Kauffman[Link[11, NonAlternating, 196]][a, z] |
Out[9]= | 5 7
6 a a 3 5 7 2 2 2 4 2
-a + -- + -- - a z + a z - 4 a z - 6 a z - 2 z - 7 a z - 4 a z +
z z
3 4
6 2 3 z 3 3 5 3 7 3 4 z 2 4
> a z + ---- - 7 a z + 4 a z + 8 a z + 8 z - -- + 12 a z +
a 2
a
5
4 4 6 4 4 z 5 3 5 5 5 7 5 6
> 5 a z + 2 a z - ---- + 7 a z + 16 a z + 2 a z - 3 a z - 7 z -
a
2 6 4 6 7 3 7 5 7 2 8 4 8 6 8
> 2 a z + 5 a z - 7 a z - 8 a z - a z - 4 a z - 5 a z - a z -
3 9 5 9
> a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 5 2 1 3 1 5 3 5 5
6 + -- + ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
2 14 6 12 6 12 5 10 5 10 4 8 4 8 3 6 3
q q t q t q t q t q t q t q t q t
7 5 5 7 2 2 2 4 2 6 3
> ----- + ----- + ---- + ---- + 3 t + 4 q t + q t + 3 q t + q t
6 2 4 2 4 2
q t q t q t q t |