© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n195
L11n195
L11n197
L11n197
L11n196
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n196

Visit L11n196's page at Knotilus!

Acknowledgement

L11n196 as Morse Link
DrawMorseLink

PD Presentation: X8192 X12,3,13,4 X13,21,14,20 X16,9,17,10 X10,19,11,20 X15,7,16,22 X21,15,22,14 X18,5,19,6 X2738 X4,11,5,12 X6,17,1,18

Gauss Code: {{1, -9, 2, -10, 8, -11}, {9, -1, 4, -5, 10, -2, -3, 7, -6, -4, 11, -8, 5, 3, -7, 6}}

Jones Polynomial: - 2q-13/2 + 4q-11/2 - 8q-9/2 + 10q-7/2 - 12q-5/2 + 12q-3/2 - 10q-1/2 + 7q1/2 - 4q3/2 + q5/2

A2 (sl(3)) Invariant: q-22 + 3q-20 + 2q-16 + 3q-14 - 2q-12 + 2q-10 - q-8 + q-4 - 2q-2 + 3 - 2q2 + 2q6 - q8

HOMFLY-PT Polynomial: a-1z3 - az - az3 - az5 - a3z - a3z3 - a3z5 - a5z-1 - a5z + a5z3 + a7z-1

Kauffman Polynomial: - a-2z4 + 3a-1z3 - 4a-1z5 - 2z2 + 8z4 - 7z6 - az + 7az5 - 7az7 - 7a2z2 + 12a2z4 - 2a2z6 - 4a2z8 + a3z - 7a3z3 + 16a3z5 - 8a3z7 - a3z9 - 4a4z2 + 5a4z4 + 5a4z6 - 5a4z8 + a5z-1 - 4a5z + 4a5z3 + 2a5z5 - a5z7 - a5z9 - a6 + a6z2 + 2a6z4 - a6z8 + a7z-1 - 6a7z + 8a7z3 - 3a7z5

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 6         1
j = 4        3 
j = 2       41 
j = 0      63  
j = -2     75   
j = -4    55    
j = -6   57     
j = -8  35      
j = -10 15       
j = -1213        
j = -142         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 196]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 196]]
Out[4]=   
PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[13, 21, 14, 20], X[16, 9, 17, 10], 
 
>   X[10, 19, 11, 20], X[15, 7, 16, 22], X[21, 15, 22, 14], X[18, 5, 19, 6], 
 
>   X[2, 7, 3, 8], X[4, 11, 5, 12], X[6, 17, 1, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10, 8, -11}, 
 
>   {9, -1, 4, -5, 10, -2, -3, 7, -6, -4, 11, -8, 5, 3, -7, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -2       4      8      10     12     12      10                     3/2    5/2
----- + ----- - ---- + ---- - ---- + ---- - ------- + 7 Sqrt[q] - 4 q    + q
 13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
q       q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    3     2     3     2     2     -8    -4   2       2      6    8
3 + q    + --- + --- + --- - --- + --- - q   + q   - -- - 2 q  + 2 q  - q
            20    16    14    12    10                2
           q     q     q     q     q                 q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 196]][a, z]
Out[8]=   
   5     7                        3
  a     a           3      5     z       3    3  3    5  3      5    3  5
-(--) + -- - a z - a  z - a  z + -- - a z  - a  z  + a  z  - a z  - a  z
  z     z                        a
In[9]:=
Kauffman[Link[11, NonAlternating, 196]][a, z]
Out[9]=   
       5    7
  6   a    a           3        5        7        2      2  2      4  2
-a  + -- + -- - a z + a  z - 4 a  z - 6 a  z - 2 z  - 7 a  z  - 4 a  z  + 
      z    z
 
               3                                         4
     6  2   3 z       3  3      5  3      7  3      4   z        2  4
>   a  z  + ---- - 7 a  z  + 4 a  z  + 8 a  z  + 8 z  - -- + 12 a  z  + 
             a                                           2
                                                        a
 
                           5
       4  4      6  4   4 z         5       3  5      5  5      7  5      6
>   5 a  z  + 2 a  z  - ---- + 7 a z  + 16 a  z  + 2 a  z  - 3 a  z  - 7 z  - 
                         a
 
       2  6      4  6        7      3  7    5  7      2  8      4  8    6  8
>   2 a  z  + 5 a  z  - 7 a z  - 8 a  z  - a  z  - 4 a  z  - 5 a  z  - a  z  - 
 
     3  9    5  9
>   a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    5      2        1        3        1        5        3       5       5
6 + -- + ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + 
     2    14  6    12  6    12  5    10  5    10  4    8  4    8  3    6  3
    q    q   t    q   t    q   t    q   t    q   t    q  t    q  t    q  t
 
      7       5      5      7              2      2  2      4  2    6  3
>   ----- + ----- + ---- + ---- + 3 t + 4 q  t + q  t  + 3 q  t  + q  t
     6  2    4  2    4      2
    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n196
L11n195
L11n195
L11n197
L11n197