PD Presentation: |
X8192 X2,11,3,12 X12,3,13,4 X16,5,17,6 X6718 X4,15,5,16 X20,14,21,13 X9,18,10,19 X19,10,20,11 X22,18,7,17 X14,22,15,21 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 195]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 195]] |
Out[4]= | PD[X[8, 1, 9, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[16, 5, 17, 6],
> X[6, 7, 1, 8], X[4, 15, 5, 16], X[20, 14, 21, 13], X[9, 18, 10, 19],
> X[19, 10, 20, 11], X[22, 18, 7, 17], X[14, 22, 15, 21]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -2, 3, -6, 4, -5},
> {5, -1, -8, 9, 2, -3, 7, -11, 6, -4, 10, 8, -9, -7, 11, -10}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) 3 6 8 10 10 9 6 4 1
-q + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + -------
17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -28 -26 2 3 -16 3 -12 -10 2 -6 2 -2
q - q + --- + --- - q + --- - q + q + -- - q + -- - q
24 18 14 8 4
q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 195]][a, z] |
Out[8]= | 5 7
a a 5 7 3 3 5 3 7 3 3 5 5 5
-(--) + -- - 6 a z + 3 a z + 2 a z - 9 a z + 3 a z + a z - 5 a z +
z z
7 5 5 7
> a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 195]][a, z] |
Out[9]= | 5 7
6 a a 5 7 9 11 2 2 4 2 6 2
-a + -- + -- - 6 a z - 4 a z + a z - a z + a z + 2 a z + 3 a z -
z z
10 2 3 3 5 3 7 3 9 3 11 3 2 4
> 2 a z + 5 a z + 10 a z + a z - 2 a z + 2 a z - a z -
4 4 6 4 8 4 10 4 3 5 5 5 7 5
> 2 a z - 6 a z + a z + 6 a z - 4 a z - 7 a z + 5 a z +
9 5 11 5 6 6 8 6 10 6 5 7 7 7
> 7 a z - a z + 6 a z + 3 a z - 3 a z + a z - 3 a z -
9 7 4 8 6 8 8 8 5 9 7 9
> 4 a z - a z - 4 a z - 3 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 3 1 2 1 4 3 5 3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 20 8 18 7 16 7 16 6 14 6 14 5 12 5
q q q t q t q t q t q t q t q t
5 5 5 5 4 5 2 4
> ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + t
12 4 10 4 10 3 8 3 8 2 6 2 6 4
q t q t q t q t q t q t q t q t |