PD Presentation: |
X8192 X16,6,17,5 X9,20,10,21 X21,10,22,11 X18,16,19,15 X14,20,15,19 X2,11,3,12 X12,3,13,4 X4758 X22,14,7,13 X6,18,1,17 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 194]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 194]] |
Out[4]= | PD[X[8, 1, 9, 2], X[16, 6, 17, 5], X[9, 20, 10, 21], X[21, 10, 22, 11],
> X[18, 16, 19, 15], X[14, 20, 15, 19], X[2, 11, 3, 12], X[12, 3, 13, 4],
> X[4, 7, 5, 8], X[22, 14, 7, 13], X[6, 18, 1, 17]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -7, 8, -9, 2, -11},
> {9, -1, -3, 4, 7, -8, 10, -6, 5, -2, 11, -5, 6, 3, -4, -10}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(13/2) 3 6 9 11 11 11 3/2
-q + ----- - ---- + ---- - ---- + ---- - ------- + 7 Sqrt[q] - 5 q +
11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q
5/2
> 2 q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -20 -18 2 2 2 3 6 8
5 + q - q + --- - --- + --- + -- + q - 2 q
14 12 10 4
q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 194]][a, z] |
Out[8]= | 3 3
a a 3 z 3 5 2 z 3 3 3 5 3
-(-) + -- + --- - 6 a z + a z + a z + ---- - 6 a z - a z + a z -
z z a a
5 3 5
> 2 a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 194]][a, z] |
Out[9]= | 3 2
2 a a 5 z 3 7 2 4 z 2 2 4 2
-a + - + -- - --- - 9 a z - 3 a z - a z + 5 z + ---- + 3 a z - a z -
z z a 2
a
3 4
6 2 8 z 3 5 3 7 3 4 3 z 2 4
> 3 a z + ---- + 11 a z - a z + 2 a z - 5 z - ---- - 4 a z +
a 2
a
5
4 4 6 4 3 z 5 3 5 5 5 7 5 6
> 4 a z + 6 a z - ---- - 2 a z + 8 a z + 6 a z - a z + 2 z +
a
7
2 6 4 6 6 6 z 7 3 7 5 7 8
> 6 a z + a z - 3 a z - -- - 2 a z - 5 a z - 4 a z - 2 z -
a
2 8 4 8 9 3 9
> 5 a z - 3 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 5 1 2 1 4 2 5 4 6
7 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- +
2 14 6 12 5 10 5 10 4 8 4 8 3 6 3 6 2
q q t q t q t q t q t q t q t q t
6 6 5 2 2 2 4 2 6 3
> ----- + ---- + ---- + 3 t + 4 q t + 2 q t + 3 q t + 2 q t
4 2 4 2
q t q t q t |