© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n192
L11n192
L11n194
L11n194
L11n193
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n193

Visit L11n193's page at Knotilus!

Acknowledgement

L11n193 as Morse Link
DrawMorseLink

PD Presentation: X8192 X9,21,10,20 X4758 X16,5,17,6 X6,15,1,16 X22,17,7,18 X18,13,19,14 X14,21,15,22 X2,11,3,12 X12,3,13,4 X19,11,20,10

Gauss Code: {{1, -9, 10, -3, 4, -5}, {3, -1, -2, 11, 9, -10, 7, -8, 5, -4, 6, -7, -11, 2, 8, -6}}

Jones Polynomial: q-21/2 - 4q-19/2 + 7q-17/2 - 10q-15/2 + 12q-13/2 - 13q-11/2 + 11q-9/2 - 9q-7/2 + 5q-5/2 - 2q-3/2

A2 (sl(3)) Invariant: - q-32 + 2q-30 - 2q-26 + 3q-24 - q-22 + 2q-20 + 2q-18 + 3q-14 - 2q-12 + 2q-10 + q-8 - 2q-6 + 2q-4

HOMFLY-PT Polynomial: - 2a3z - 2a3z3 - a5z-1 - 2a5z + a5z5 + a7z-1 + a7z + a7z3 + a7z5 - a9z3

Kauffman Polynomial: 2a3z - 3a3z3 + 2a4z2 - 4a4z4 - a4z6 + a5z-1 - 3a5z + a5z3 - 3a5z7 - a6 + 4a6z2 - 6a6z4 + 5a6z6 - 4a6z8 + a7z-1 - 3a7z - a7z3 + 9a7z5 - 3a7z7 - 2a7z9 + a8z2 - 8a8z4 + 19a8z6 - 9a8z8 + 2a9z - 12a9z3 + 20a9z5 - 4a9z7 - 2a9z9 - 2a10z2 - 4a10z4 + 12a10z6 - 5a10z8 - 7a11z3 + 11a11z5 - 4a11z7 - a12z2 + 2a12z4 - a12z6

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2         2
j = -4        41
j = -6       51 
j = -8      64  
j = -10     75   
j = -12    56    
j = -14   57     
j = -16  36      
j = -18 14       
j = -20 3        
j = -221         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 193]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 193]]
Out[4]=   
PD[X[8, 1, 9, 2], X[9, 21, 10, 20], X[4, 7, 5, 8], X[16, 5, 17, 6], 
 
>   X[6, 15, 1, 16], X[22, 17, 7, 18], X[18, 13, 19, 14], X[14, 21, 15, 22], 
 
>   X[2, 11, 3, 12], X[12, 3, 13, 4], X[19, 11, 20, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 10, -3, 4, -5}, 
 
>   {3, -1, -2, 11, 9, -10, 7, -8, 5, -4, 6, -7, -11, 2, 8, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(21/2)     4       7      10      12      13      11     9      5      2
q        - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ----
            19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
           q       q       q       q       q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -32    2     2     3     -22    2     2     3     2     2     -8   2    2
-q    + --- - --- + --- - q    + --- + --- + --- - --- + --- + q   - -- + --
         30    26    24           20    18    14    12    10          6    4
        q     q     q            q     q     q     q     q           q    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 193]][a, z]
Out[8]=   
   5     7
  a     a       3        5      7        3  3    7  3    9  3    5  5    7  5
-(--) + -- - 2 a  z - 2 a  z + a  z - 2 a  z  + a  z  - a  z  + a  z  + a  z
  z     z
In[9]:=
Kauffman[Link[11, NonAlternating, 193]][a, z]
Out[9]=   
       5    7
  6   a    a       3        5        7        9        4  2      6  2    8  2
-a  + -- + -- + 2 a  z - 3 a  z - 3 a  z + 2 a  z + 2 a  z  + 4 a  z  + a  z  - 
      z    z
 
       10  2    12  2      3  3    5  3    7  3       9  3      11  3
>   2 a   z  - a   z  - 3 a  z  + a  z  - a  z  - 12 a  z  - 7 a   z  - 
 
       4  4      6  4      8  4      10  4      12  4      7  5       9  5
>   4 a  z  - 6 a  z  - 8 a  z  - 4 a   z  + 2 a   z  + 9 a  z  + 20 a  z  + 
 
        11  5    4  6      6  6       8  6       10  6    12  6      5  7
>   11 a   z  - a  z  + 5 a  z  + 19 a  z  + 12 a   z  - a   z  - 3 a  z  - 
 
       7  7      9  7      11  7      6  8      8  8      10  8      7  9
>   3 a  z  - 4 a  z  - 4 a   z  - 4 a  z  - 9 a  z  - 5 a   z  - 2 a  z  - 
 
       9  9
>   2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4   2      1        3        1        4        3        6        5
q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
       2    22  9    20  8    18  8    18  7    16  7    16  6    14  6
      q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      7        5        6        7        5        6       4       5      1
>   ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- + 
     14  5    12  5    12  4    10  4    10  3    8  3    8  2    6  2    6
    q   t    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
     4
>   ----
     4
    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n193
L11n192
L11n192
L11n194
L11n194