PD Presentation: |
X8192 X12,3,13,4 X22,10,7,9 X10,14,11,13 X5,19,6,18 X21,16,22,17 X15,20,16,21 X19,14,20,15 X2738 X4,11,5,12 X17,1,18,6 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 197]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 197]] |
Out[4]= | PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[22, 10, 7, 9], X[10, 14, 11, 13],
> X[5, 19, 6, 18], X[21, 16, 22, 17], X[15, 20, 16, 21], X[19, 14, 20, 15],
> X[2, 7, 3, 8], X[4, 11, 5, 12], X[17, 1, 18, 6]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 2, -10, -5, 11},
> {9, -1, 3, -4, 10, -2, 4, 8, -7, 6, -11, 5, -8, 7, -6, -3}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(15/2) -(13/2) -(11/2) -(9/2) -(7/2) 2 2
q - q + q - q - q - ---- + ------- -
3/2 Sqrt[q]
q
3/2 5/2
> 2 Sqrt[q] + 2 q - q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -24 -22 -20 -18 -16 -14 3 3 3 3 2 8
-1 - q - q - q - q + q + q + --- + --- + -- + -- - q + q
12 10 8 6
q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 197]][a, z] |
Out[8]= | 3 5 7 3
-2 a 3 a a 2 z 3 5 7 z 3
----- + ---- - -- - --- + 3 a z - 4 a z + 3 a z - a z - -- + 4 a z -
z z z a a
3 3 5 3 5
> a z + a z + a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 197]][a, z] |
Out[9]= | 3 5 7
4 6 8 2 a 3 a a 2 z 3 5 7 2
3 a + 3 a + a - ---- - ---- - -- + --- - a z + 4 a z + 3 a z + 7 z +
z z z a
3
2 2 4 2 6 2 8 2 6 z 3 3 3 5 3
> 12 a z + 4 a z - 7 a z - 6 a z - ---- - 5 a z + 6 a z - a z -
a
5
7 3 4 2 4 4 4 6 4 8 4 5 z
> 6 a z - 16 z - 28 a z - 11 a z + 6 a z + 5 a z + ---- -
a
3 5 5 5 7 5 6 2 6 4 6 6 6 8 6
> 9 a z + a z + 5 a z + 11 z + 18 a z + 7 a z - a z - a z -
7
z 7 3 7 7 7 8 2 8 4 8 9 3 9
> -- + 4 a z + 6 a z - a z - 2 z - 3 a z - a z - a z - a z
a |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 2 1 1 1 1 1 1 1
1 + -- + -- + ------ + ------ + ------ + ------ + ----- + ------ + ----- +
4 2 16 7 12 6 12 5 10 4 8 4 10 3 6 3
q q q t q t q t q t q t q t q t
1 3 1 1 1 1 t 2 2 2
> ----- + ----- + ----- + ---- + ---- + ---- + 2 t + -- + t + q t +
8 2 6 2 4 2 6 4 2 2
q t q t q t q t q t q t q
2 3 4 3 6 4
> q t + q t + q t |