© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n156
L11n156
L11n158
L11n158
L11n157
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n157

Visit L11n157's page at Knotilus!

Acknowledgement

L11n157 as Morse Link
DrawMorseLink

PD Presentation: X8192 X2,9,3,10 X10,3,11,4 X17,15,18,14 X7,17,8,16 X15,7,16,22 X13,19,14,18 X6,20,1,19 X20,12,21,11 X12,6,13,5 X4,21,5,22

Gauss Code: {{1, -2, 3, -11, 10, -8}, {-5, -1, 2, -3, 9, -10, -7, 4, -6, 5, -4, 7, 8, -9, 11, 6}}

Jones Polynomial: - q-7/2 + 3q-5/2 - 6q-3/2 + 8q-1/2 - 11q1/2 + 10q3/2 - 10q5/2 + 7q7/2 - 4q9/2 + 2q11/2

A2 (sl(3)) Invariant: q-10 - q-8 + 2q-6 + 4 + 5q4 + q6 + 2q8 + q10 - 3q12 - 2q16 - q18

HOMFLY-PT Polynomial: a-5z-1 + a-5z - 2a-3z-1 + 2a-3z3 + a-3z5 - 5a-1z - 9a-1z3 - 5a-1z5 - a-1z7 + az-1 + 3az + 3az3 + az5

Kauffman Polynomial: - 2a-6 + 6a-6z2 - 3a-6z4 + a-5z-1 - a-5z + 3a-5z3 - a-5z5 - a-5z7 - 5a-4 + 12a-4z2 - 10a-4z4 + 4a-4z6 - 2a-4z8 + 2a-3z-1 - 6a-3z3 + 5a-3z5 - 2a-3z7 - a-3z9 - 3a-2 + 5a-2z2 - 9a-2z4 + 9a-2z6 - 5a-2z8 + 5a-1z - 14a-1z3 + 14a-1z5 - 5a-1z7 - a-1z9 + 1 - 3z2 + 4z4 + 2z6 - 3z8 - az-1 + 3az - 3az3 + 7az5 - 4az7 - 2a2z2 + 6a2z4 - 3a2z6 - a3z + 2a3z3 - a3z5

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 12         2
j = 10        2 
j = 8       52 
j = 6      52  
j = 4     55   
j = 2    65    
j = 0   36     
j = -2  35      
j = -4 14       
j = -6 2        
j = -81         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 157]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 157]]
Out[4]=   
PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[17, 15, 18, 14], 
 
>   X[7, 17, 8, 16], X[15, 7, 16, 22], X[13, 19, 14, 18], X[6, 20, 1, 19], 
 
>   X[20, 12, 21, 11], X[12, 6, 13, 5], X[4, 21, 5, 22]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -11, 10, -8}, 
 
>   {-5, -1, 2, -3, 9, -10, -7, 4, -6, 5, -4, 7, 8, -9, 11, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(7/2)    3      6        8                       3/2       5/2      7/2
-q       + ---- - ---- + ------- - 11 Sqrt[q] + 10 q    - 10 q    + 7 q    - 
            5/2    3/2   Sqrt[q]
           q      q
 
       9/2      11/2
>   4 q    + 2 q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -10    -8   2       4    6      8    10      12      16    18
4 + q    - q   + -- + 5 q  + q  + 2 q  + q   - 3 q   - 2 q   - q
                  6
                 q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 157]][a, z]
Out[8]=   
                                        3      3             5      5
 1      2     a   z    5 z           2 z    9 z         3   z    5 z       5
---- - ---- + - + -- - --- + 3 a z + ---- - ---- + 3 a z  + -- - ---- + a z  - 
 5      3     z    5    a              3     a               3    a
a  z   a  z       a                   a                     a
 
     7
    z
>   --
    a
In[9]:=
Kauffman[Link[11, NonAlternating, 157]][a, z]
Out[9]=   
                                                                         2
    2    5    3     1      2     a   z    5 z            3        2   6 z
1 - -- - -- - -- + ---- + ---- - - - -- + --- + 3 a z - a  z - 3 z  + ---- + 
     6    4    2    5      3     z    5    a                            6
    a    a    a    a  z   a  z       a                                 a
 
        2      2                3      3       3
    12 z    5 z       2  2   3 z    6 z    14 z         3      3  3      4
>   ----- + ---- - 2 a  z  + ---- - ---- - ----- - 3 a z  + 2 a  z  + 4 z  - 
      4       2                5      3      a
     a       a                a      a
 
       4       4      4              5      5       5
    3 z    10 z    9 z       2  4   z    5 z    14 z         5    3  5      6
>   ---- - ----- - ---- + 6 a  z  - -- + ---- + ----- + 7 a z  - a  z  + 2 z  + 
      6      4       2               5     3      a
     a      a       a               a     a
 
       6      6              7      7      7                      8      8
    4 z    9 z       2  6   z    2 z    5 z         7      8   2 z    5 z
>   ---- + ---- - 3 a  z  - -- - ---- - ---- - 4 a z  - 3 z  - ---- - ---- - 
      4      2               5     3     a                       4      2
     a      a               a     a                             a      a
 
     9    9
    z    z
>   -- - --
     3   a
    a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       2       1       4       3     3    5        2        4
6 + 6 q  + ----- + ----- + ----- + ----- + ----- + - + ---- + 5 q  t + 5 q  t + 
            8  4    6  3    4  3    4  2    2  2   t    2
           q  t    q  t    q  t    q  t    q  t        q  t
 
       4  2      6  2      6  3      8  3      8  4      10  4      12  5
>   5 q  t  + 5 q  t  + 2 q  t  + 5 q  t  + 2 q  t  + 2 q   t  + 2 q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n157
L11n156
L11n156
L11n158
L11n158