© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n106
L11n106
L11n108
L11n108
L11n107
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n107

Visit L11n107's page at Knotilus!

Acknowledgement

L11n107 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,13,4,12 X13,19,14,18 X17,11,18,10 X21,9,22,8 X7,17,8,16 X9,21,10,20 X15,5,16,22 X19,15,20,14 X2536 X11,1,12,4

Gauss Code: {{1, -10, -2, 11}, {10, -1, -6, 5, -7, 4, -11, 2, -3, 9, -8, 6, -4, 3, -9, 7, -5, 8}}

Jones Polynomial: - 3q3/2 + 6q5/2 - 11q7/2 + 12q9/2 - 14q11/2 + 13q13/2 - 10q15/2 + 7q17/2 - 3q19/2 + q21/2

A2 (sl(3)) Invariant: 3q4 - q6 + 3q8 + 4q10 + 5q14 + 2q18 - 3q22 + q24 - 4q26 - q28 + q30 - q32

HOMFLY-PT Polynomial: a-9z-1 + a-9z + a-9z3 - a-7z-1 - a-7z - a-7z3 - a-7z5 - 2a-5z-1 - 5a-5z - 5a-5z3 - 2a-5z5 + 2a-3z-1 + 5a-3z + 3a-3z3

Kauffman Polynomial: a-12 - 3a-12z2 + 3a-12z4 - a-12z6 + a-11z - 6a-11z3 + 8a-11z5 - 3a-11z7 - 2a-10z2 - a-10z4 + 8a-10z6 - 4a-10z8 + a-9z-1 + 2a-9z - 12a-9z3 + 19a-9z5 - 4a-9z7 - 2a-9z9 - 3a-8 + 6a-8z2 - 11a-8z4 + 21a-8z6 - 10a-8z8 + a-7z-1 + 4a-7z - 19a-7z3 + 25a-7z5 - 8a-7z7 - 2a-7z9 + 2a-6z2 - 7a-6z4 + 9a-6z6 - 6a-6z8 - 2a-5z-1 + 10a-5z - 19a-5z3 + 14a-5z5 - 7a-5z7 + 3a-4 - 3a-4z2 - 3a-4z6 - 2a-3z-1 + 7a-3z - 6a-3z3

Khovanov Homology:
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 22         1
j = 20        2 
j = 18       51 
j = 16      52  
j = 14     85   
j = 12    65    
j = 10   68     
j = 8  56      
j = 6 16       
j = 425        
j = 23         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 107]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 107]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 13, 4, 12], X[13, 19, 14, 18], X[17, 11, 18, 10], 
 
>   X[21, 9, 22, 8], X[7, 17, 8, 16], X[9, 21, 10, 20], X[15, 5, 16, 22], 
 
>   X[19, 15, 20, 14], X[2, 5, 3, 6], X[11, 1, 12, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {10, -1, -6, 5, -7, 4, -11, 2, -3, 9, -8, 6, -4, 3, 
 
>    -9, 7, -5, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
    3/2      5/2       7/2       9/2       11/2       13/2       15/2
-3 q    + 6 q    - 11 q    + 12 q    - 14 q     + 13 q     - 10 q     + 
 
       17/2      19/2    21/2
>   7 q     - 3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
   4    6      8      10      14      18      22    24      26    28    30    32
3 q  - q  + 3 q  + 4 q   + 5 q   + 2 q   - 3 q   + q   - 4 q   - q   + q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 107]][a, z]
Out[8]=   
                                                   3    3      3      3    5
 1      1      2      2     z    z    5 z   5 z   z    z    5 z    3 z    z
---- - ---- - ---- + ---- + -- - -- - --- + --- + -- - -- - ---- + ---- - -- - 
 9      7      5      3      9    7    5     3     9    7     5      3     7
a  z   a  z   a  z   a  z   a    a    a     a     a    a     a      a     a
 
       5
    2 z
>   ----
      5
     a
In[9]:=
Kauffman[Link[11, NonAlternating, 107]][a, z]
Out[9]=   
 -12   3    3     1      1      2      2      z    2 z   4 z   10 z   7 z
a    - -- + -- + ---- + ---- - ---- - ---- + --- + --- + --- + ---- + --- - 
        8    4    9      7      5      3      11    9     7      5     3
       a    a    a  z   a  z   a  z   a  z   a     a     a      a     a
 
       2      2      2      2      2      3       3       3       3      3
    3 z    2 z    6 z    2 z    3 z    6 z    12 z    19 z    19 z    6 z
>   ---- - ---- + ---- + ---- - ---- - ---- - ----- - ----- - ----- - ---- + 
     12     10      8      6      4     11      9       7       5       3
    a      a       a      a      a     a       a       a       a       a
 
       4    4        4      4      5       5       5       5    6       6
    3 z    z     11 z    7 z    8 z    19 z    25 z    14 z    z     8 z
>   ---- - --- - ----- - ---- + ---- + ----- + ----- + ----- - --- + ---- + 
     12     10     8       6     11      9       7       5      12    10
    a      a      a       a     a       a       a       a      a     a
 
        6      6      6      7      7      7      7      8       8      8
    21 z    9 z    3 z    3 z    4 z    8 z    7 z    4 z    10 z    6 z
>   ----- + ---- - ---- - ---- - ---- - ---- - ---- - ---- - ----- - ---- - 
      8       6      4     11      9      7      5     10      8       6
     a       a      a     a       a      a      a     a       a       a
 
       9      9
    2 z    2 z
>   ---- - ----
      9      7
     a      a
In[10]:=
Kh[L][q, t]
Out[10]=   
   2      4      4      6        6  2      8  2      8  3      10  3
3 q  + 2 q  + 5 q  t + q  t + 6 q  t  + 5 q  t  + 6 q  t  + 6 q   t  + 
 
       10  4      12  4      12  5      14  5      14  6      16  6
>   8 q   t  + 6 q   t  + 5 q   t  + 8 q   t  + 5 q   t  + 5 q   t  + 
 
       16  7      18  7    18  8      20  8    22  9
>   2 q   t  + 5 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n107
L11n106
L11n106
L11n108
L11n108