© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n107
L11n107
L11n109
L11n109
L11n108
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n108

Visit L11n108's page at Knotilus!

Acknowledgement

L11n108 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,3,13,4 X13,19,14,18 X17,11,18,10 X21,9,22,8 X7,17,8,16 X9,21,10,20 X15,5,16,22 X19,15,20,14 X2536 X4,11,1,12

Gauss Code: {{1, -10, 2, -11}, {10, -1, -6, 5, -7, 4, 11, -2, -3, 9, -8, 6, -4, 3, -9, 7, -5, 8}}

Jones Polynomial: - q-5/2 + q-3/2 - 2q-1/2 - q1/2 + q3/2 - 2q5/2 + 3q7/2 - 3q9/2 + 3q11/2 - 2q13/2 + q15/2

A2 (sl(3)) Invariant: q-8 + q-6 + 2q-4 + 2q-2 + 4 + 3q2 + q4 + 2q6 - q8 - q10 - 2q12 - 2q14 - q18 + q20 - q24

HOMFLY-PT Polynomial: a-7z + a-5z-1 - a-5z3 - a-3z-1 - a-3z - a-3z3 - 2a-1z-1 - 5a-1z - 5a-1z3 - a-1z5 + 2az-1 + 3az + az3

Kauffman Polynomial: a-8 - 4a-8z2 + 4a-8z4 - a-8z6 + 2a-7z - 7a-7z3 + 8a-7z5 - 2a-7z7 - 3a-6z2 + 4a-6z4 + 2a-6z6 - a-6z8 + a-5z-1 + 2a-5z - 12a-5z3 + 13a-5z5 - 3a-5z7 - 3a-4 + 15a-4z2 - 21a-4z4 + 12a-4z6 - 2a-4z8 + a-3z-1 - 3a-3z + 3a-3z3 - 8a-3z5 + 6a-3z7 - a-3z9 + 10a-2z2 - 24a-2z4 + 14a-2z6 - 2a-2z8 - 2a-1z-1 + 4a-1z - 2a-1z3 - 7a-1z5 + 6a-1z7 - a-1z9 + 3 - 4z2 - 3z4 + 5z6 - z8 - 2az-1 + 7az - 10az3 + 6az5 - az7

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 16           1
j = 14          1 
j = 12         21 
j = 10       121  
j = 8       22   
j = 6     232    
j = 4    122     
j = 2   132      
j = 0  113       
j = -2  1         
j = -411          
j = -61           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 108]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 108]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[13, 19, 14, 18], X[17, 11, 18, 10], 
 
>   X[21, 9, 22, 8], X[7, 17, 8, 16], X[9, 21, 10, 20], X[15, 5, 16, 22], 
 
>   X[19, 15, 20, 14], X[2, 5, 3, 6], X[4, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, -6, 5, -7, 4, 11, -2, -3, 9, -8, 6, -4, 3, 
 
>    -9, 7, -5, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)    -(3/2)      2                 3/2      5/2      7/2      9/2
-q       + q       - ------- - Sqrt[q] + q    - 2 q    + 3 q    - 3 q    + 
                     Sqrt[q]
 
       11/2      13/2    15/2
>   3 q     - 2 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -8    -6   2    2       2    4      6    8    10      12      14    18
4 + q   + q   + -- + -- + 3 q  + q  + 2 q  - q  - q   - 2 q   - 2 q   - q   + 
                 4    2
                q    q
 
     20    24
>   q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 108]][a, z]
Out[8]=   
                                                   3    3      3           5
 1      1      2    2 a   z    z    5 z           z    z    5 z       3   z
---- - ---- - --- + --- + -- - -- - --- + 3 a z - -- - -- - ---- + a z  - --
 5      3     a z    z     7    3    a             5    3    a            a
a  z   a  z               a    a                  a    a
In[9]:=
Kauffman[Link[11, NonAlternating, 108]][a, z]
Out[9]=   
     -8   3     1      1      2    2 a   2 z   2 z   3 z   4 z              2
3 + a   - -- + ---- + ---- - --- - --- + --- + --- - --- + --- + 7 a z - 4 z  - 
           4    5      3     a z    z     7     5     3     a
          a    a  z   a  z               a     a     a
 
       2      2       2       2      3       3      3      3
    4 z    3 z    15 z    10 z    7 z    12 z    3 z    2 z          3      4
>   ---- - ---- + ----- + ----- - ---- - ----- + ---- - ---- - 10 a z  - 3 z  + 
      8      6      4       2       7      5       3     a
     a      a      a       a       a      a       a
 
       4      4       4       4      5       5      5      5
    4 z    4 z    21 z    24 z    8 z    13 z    8 z    7 z         5      6
>   ---- + ---- - ----- - ----- + ---- + ----- - ---- - ---- + 6 a z  + 5 z  - 
      8      6      4       2       7      5       3     a
     a      a      a       a       a      a       a
 
     6      6       6       6      7      7      7      7                8
    z    2 z    12 z    14 z    2 z    3 z    6 z    6 z       7    8   z
>   -- + ---- + ----- + ----- - ---- - ---- + ---- + ---- - a z  - z  - -- - 
     8     6      4       2       7      5      3     a                  6
    a     a      a       a       a      a      a                        a
 
       8      8    9    9
    2 z    2 z    z    z
>   ---- - ---- - -- - --
      4      2     3   a
     a      a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                                           2
       2    4     1       1       1      -2     1     1   q       2
3 + 3 q  + q  + ----- + ----- + ----- + t   + ----- + - + -- + 2 q  t + 
                 6  4    4  4    4  3          2  2   t   t
                q  t    q  t    q  t          q  t
 
       4        6        4  2      6  2      6  3      8  3    10  3
>   2 q  t + 2 q  t + 2 q  t  + 3 q  t  + 2 q  t  + 2 q  t  + q   t  + 
 
       8  4      10  4    10  5      12  5    12  6    14  6    16  7
>   2 q  t  + 2 q   t  + q   t  + 2 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n108
L11n107
L11n107
L11n109
L11n109