© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n105
L11n105
L11n107
L11n107
L11n106
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n106

Visit L11n106's page at Knotilus!

Acknowledgement

L11n106 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,3,13,4 X7,16,8,17 X17,22,18,5 X13,18,14,19 X9,21,10,20 X19,14,20,15 X21,9,22,8 X15,10,16,11 X2536 X4,11,1,12

Gauss Code: {{1, -10, 2, -11}, {10, -1, -3, 8, -6, 9, 11, -2, -5, 7, -9, 3, -4, 5, -7, 6, -8, 4}}

Jones Polynomial: q-21/2 - 2q-19/2 + 3q-17/2 - 3q-15/2 + 2q-13/2 - 3q-11/2 + q-9/2 - q-5/2 + q-3/2 - q-1/2

A2 (sl(3)) Invariant: - q-34 - 2q-32 + q-30 - q-28 + 2q-24 + q-22 + 3q-20 + q-18 + 2q-16 - q-12 + q-10 + q-8 + q-4 + q-2

HOMFLY-PT Polynomial: - a3z-1 - 5a3z - 5a3z3 - a3z5 + 2a5z-1 + 8a5z + 10a5z3 + 6a5z5 + a5z7 - 3a7z-1 - 9a7z - 7a7z3 - a7z5 + 3a9z-1 + 4a9z - a11z-1

Kauffman Polynomial: - a3z-1 + 6a3z - 10a3z3 + 6a3z5 - a3z7 + 5a4z2 - 9a4z4 + 6a4z6 - a4z8 - 2a5z-1 + 12a5z - 23a5z3 + 14a5z5 - 2a5z7 - 2a6 + 14a6z2 - 25a6z4 + 14a6z6 - 2a6z8 - 3a7z-1 + 14a7z - 22a7z3 + 5a7z5 + 4a7z7 - a7z9 + 9a8z2 - 24a8z4 + 17a8z6 - 3a8z8 - 3a9z-1 + 11a9z - 15a9z3 + 5a9z5 + 3a9z7 - a9z9 + 2a10 - 3a10z2 - 4a10z4 + 8a10z6 - 2a10z8 - a11z-1 + 3a11z - 6a11z3 + 8a11z5 - 2a11z7 + a12 - 3a12z2 + 4a12z4 - a12z6

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 0           1
j = -2            
j = -4        121 
j = -6       111  
j = -8      221   
j = -10     321    
j = -12    241     
j = -14   221      
j = -16  121       
j = -18 12         
j = -20 1          
j = -221           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 106]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 106]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[7, 16, 8, 17], X[17, 22, 18, 5], 
 
>   X[13, 18, 14, 19], X[9, 21, 10, 20], X[19, 14, 20, 15], X[21, 9, 22, 8], 
 
>   X[15, 10, 16, 11], X[2, 5, 3, 6], X[4, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, -3, 8, -6, 9, 11, -2, -5, 7, -9, 3, -4, 5, 
 
>    -7, 6, -8, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(21/2)     2       3       3       2       3      -(9/2)    -(5/2)
q        - ----- + ----- - ----- + ----- - ----- + q       - q       + 
            19/2    17/2    15/2    13/2    11/2
           q       q       q       q       q
 
     -(3/2)      1
>   q       - -------
              Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -34    2     -30    -28    2     -22    3     -18    2     -12    -10    -8
-q    - --- + q    - q    + --- + q    + --- + q    + --- - q    + q    + q   + 
         32                  24           20           16
        q                   q            q            q
 
     -4    -2
>   q   + q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 106]][a, z]
Out[8]=   
   3       5      7      9    11
  a     2 a    3 a    3 a    a        3        5        7        9
-(--) + ---- - ---- + ---- - --- - 5 a  z + 8 a  z - 9 a  z + 4 a  z - 
  z      z      z      z      z
 
       3  3       5  3      7  3    3  5      5  5    7  5    5  7
>   5 a  z  + 10 a  z  - 7 a  z  - a  z  + 6 a  z  - a  z  + a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 106]][a, z]
Out[9]=   
                       3      5      7      9    11
    6      10    12   a    2 a    3 a    3 a    a        3         5
-2 a  + 2 a   + a   - -- - ---- - ---- - ---- - --- + 6 a  z + 12 a  z + 
                      z     z      z      z      z
 
        7         9        11        4  2       6  2      8  2      10  2
>   14 a  z + 11 a  z + 3 a   z + 5 a  z  + 14 a  z  + 9 a  z  - 3 a   z  - 
 
       12  2       3  3       5  3       7  3       9  3      11  3      4  4
>   3 a   z  - 10 a  z  - 23 a  z  - 22 a  z  - 15 a  z  - 6 a   z  - 9 a  z  - 
 
        6  4       8  4      10  4      12  4      3  5       5  5      7  5
>   25 a  z  - 24 a  z  - 4 a   z  + 4 a   z  + 6 a  z  + 14 a  z  + 5 a  z  + 
 
       9  5      11  5      4  6       6  6       8  6      10  6    12  6
>   5 a  z  + 8 a   z  + 6 a  z  + 14 a  z  + 17 a  z  + 8 a   z  - a   z  - 
 
     3  7      5  7      7  7      9  7      11  7    4  8      6  8
>   a  z  - 2 a  z  + 4 a  z  + 3 a  z  - 2 a   z  - a  z  - 2 a  z  - 
 
       8  8      10  8    7  9    9  9
>   3 a  z  - 2 a   z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6   2      1        1        1        2        1        2        2
q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
       4    22  9    20  8    18  8    18  7    16  7    16  6    14  6
      q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1        2        2        1        4        3        1        2
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     16  5    14  5    12  5    14  4    12  4    10  4    12  3    10  3
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2       1        2       1      1      1      1     t     2
>   ----- + ------ + ----- + ----- + ---- + ---- + ---- + -- + t
     8  3    10  2    8  2    6  2    8      6      4      4
    q  t    q   t    q  t    q  t    q  t   q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n106
L11n105
L11n105
L11n107
L11n107