PD Presentation: |
X6172 X12,3,13,4 X7,16,8,17 X22,18,5,17 X18,14,19,13 X21,14,22,15 X9,20,10,21 X15,8,16,9 X19,10,20,11 X2536 X4,11,1,12 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 104]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 104]] |
Out[4]= | PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[7, 16, 8, 17], X[22, 18, 5, 17],
> X[18, 14, 19, 13], X[21, 14, 22, 15], X[9, 20, 10, 21], X[15, 8, 16, 9],
> X[19, 10, 20, 11], X[2, 5, 3, 6], X[4, 11, 1, 12]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, 2, -11}, {10, -1, -3, 8, -7, 9, 11, -2, 5, 6, -8, 3, 4, -5,
> -9, 7, -6, -4}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(17/2) 3 6 9 10 11 8 7 4
q - ----- + ----- - ----- + ---- - ---- + ---- - ---- + ------- - Sqrt[q]
15/2 13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -28 2 -24 -20 4 -16 3 2 3 2 2 2
-2 - q - --- + q - q + --- + q + --- + --- + -- - -- + -- + q
26 18 14 12 8 6 4
q q q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 104]][a, z] |
Out[8]= | 5 7 9
-2 a 3 a a 5 7 3 3 3 5 3 3 5
----- + ---- - -- - 6 a z + 4 a z - a z + a z - 4 a z + a z
z z z |
In[9]:= | Kauffman[Link[11, NonAlternating, 104]][a, z] |
Out[9]= | 5 7 9
6 8 10 2 a 3 a a 5 7 9 4 2
-3 a - 3 a - a + ---- + ---- + -- - 6 a z - 7 a z - a z + 2 a z +
z z z
6 2 8 2 10 2 3 3 3 5 3 7 3
> 10 a z + 10 a z + 2 a z + a z - 5 a z - 4 a z + 6 a z +
9 3 2 4 4 4 6 4 8 4 10 4 5
> 4 a z + 7 a z - 2 a z - 17 a z - 9 a z - a z - a z +
3 5 5 5 7 5 9 5 2 6 4 6 6 6
> 13 a z + 12 a z - 5 a z - 3 a z - 4 a z + 6 a z + 12 a z +
8 6 3 7 5 7 7 7 4 8 6 8 8 8 5 9
> 2 a z - 6 a z - 5 a z + a z - 4 a z - 5 a z - a z - a z -
7 9
> a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 4 4 1 2 1 4 2 5 5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 18 7 16 6 14 6 14 5 12 5 12 4 10 4
q q q t q t q t q t q t q t q t
6 4 5 6 3 5 t 2 2
> ------ + ----- + ----- + ----- + ---- + ---- + 3 t + -- + q t
10 3 8 3 8 2 6 2 6 4 2
q t q t q t q t q t q t q |