© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n102
L11n102
L11n104
L11n104
L11n103
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n103

Visit L11n103's page at Knotilus!

Acknowledgement

L11n103 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,3,13,4 X7,16,8,17 X17,22,18,5 X13,18,14,19 X21,14,22,15 X9,20,10,21 X15,8,16,9 X19,10,20,11 X2536 X4,11,1,12

Gauss Code: {{1, -10, 2, -11}, {10, -1, -3, 8, -7, 9, 11, -2, -5, 6, -8, 3, -4, 5, -9, 7, -6, 4}}

Jones Polynomial: q-25/2 - q-23/2 + q-21/2 + q-19/2 - 3q-17/2 + 3q-15/2 - 5q-13/2 + 4q-11/2 - 4q-9/2 + 2q-7/2 - q-5/2

A2 (sl(3)) Invariant: - q-40 - 2q-38 - q-36 - 2q-34 + q-28 + 3q-26 + q-24 + 4q-22 + q-20 + 2q-18 + 2q-16 + q-12 - q-10 + q-8

HOMFLY-PT Polynomial: - a5z - 3a5z3 - a5z5 - 2a7z-1 - 7a7z - 8a7z3 - 2a7z5 + 2a9z-1 + 4a9z + a9z3 + a11z-1 + 2a11z - a13z-1

Kauffman Polynomial: - a5z + 3a5z3 - a5z5 - a6z2 + 5a6z4 - 2a6z6 - 2a7z-1 + 9a7z - 13a7z3 + 11a7z5 - 3a7z7 + 2a8 - 5a8z2 + 4a8z4 + a8z6 - a8z8 - 2a9z-1 + 12a9z - 21a9z3 + 13a9z5 - 3a9z7 - 4a10 + 17a10z2 - 27a10z4 + 13a10z6 - 2a10z8 + a11z-1 + a11z + 2a11z3 - 12a11z5 + 7a11z7 - a11z9 - 9a12 + 34a12z2 - 41a12z4 + 17a12z6 - 2a12z8 + a13z-1 - a13z + 7a13z3 - 13a13z5 + 7a13z7 - a13z9 - 4a14 + 13a14z2 - 15a14z4 + 7a14z6 - a14z8

Khovanov Homology:
trqj r = -11r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4           1
j = -6          21
j = -8         2  
j = -10        22  
j = -12      142   
j = -14      13    
j = -16    143     
j = -18   1 1      
j = -20   13       
j = -22 11         
j = -24            
j = -261           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 103]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 103]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[7, 16, 8, 17], X[17, 22, 18, 5], 
 
>   X[13, 18, 14, 19], X[21, 14, 22, 15], X[9, 20, 10, 21], X[15, 8, 16, 9], 
 
>   X[19, 10, 20, 11], X[2, 5, 3, 6], X[4, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, -3, 8, -7, 9, 11, -2, -5, 6, -8, 3, -4, 5, 
 
>    -9, 7, -6, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(25/2)    -(23/2)    -(21/2)    -(19/2)     3       3       5       4
q        - q        + q        + q        - ----- + ----- - ----- + ----- - 
                                             17/2    15/2    13/2    11/2
                                            q       q       q       q
 
     4      2      -(5/2)
>   ---- + ---- - q
     9/2    7/2
    q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -40    2     -36    2     -28    3     -24    4     -20    2     2     -12
-q    - --- - q    - --- + q    + --- + q    + --- + q    + --- + --- + q    - 
         38           34           26           22           18    16
        q            q            q            q            q     q
 
     -10    -8
>   q    + q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 103]][a, z]
Out[8]=   
    7      9    11    13
-2 a    2 a    a     a      5        7        9        11        5  3
----- + ---- + --- - --- - a  z - 7 a  z + 4 a  z + 2 a   z - 3 a  z  - 
  z      z      z     z
 
       7  3    9  3    5  5      7  5
>   8 a  z  + a  z  - a  z  - 2 a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 103]][a, z]
Out[9]=   
                                  7      9    11    13
   8      10      12      14   2 a    2 a    a     a      5        7
2 a  - 4 a   - 9 a   - 4 a   - ---- - ---- + --- + --- - a  z + 9 a  z + 
                                z      z      z     z
 
        9      11      13      6  2      8  2       10  2       12  2
>   12 a  z + a   z - a   z - a  z  - 5 a  z  + 17 a   z  + 34 a   z  + 
 
        14  2      5  3       7  3       9  3      11  3      13  3      6  4
>   13 a   z  + 3 a  z  - 13 a  z  - 21 a  z  + 2 a   z  + 7 a   z  + 5 a  z  + 
 
       8  4       10  4       12  4       14  4    5  5       7  5       9  5
>   4 a  z  - 27 a   z  - 41 a   z  - 15 a   z  - a  z  + 11 a  z  + 13 a  z  - 
 
        11  5       13  5      6  6    8  6       10  6       12  6
>   12 a   z  - 13 a   z  - 2 a  z  + a  z  + 13 a   z  + 17 a   z  + 
 
       14  6      7  7      9  7      11  7      13  7    8  8      10  8
>   7 a   z  - 3 a  z  - 3 a  z  + 7 a   z  + 7 a   z  - a  z  - 2 a   z  - 
 
       12  8    14  8    11  9    13  9
>   2 a   z  - a   z  - a   z  - a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4      1         1        1        1        1        3        1
q   + q   + ------- + ------- + ------ + ------ + ------ + ------ + ------ + 
             26  11    22  10    22  9    20  8    18  8    20  7    16  7
            q   t     q   t     q   t    q   t    q   t    q   t    q   t
 
      1        4        3        1        1        3        4        2
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     18  6    16  6    16  5    14  5    12  5    14  4    12  4    12  3
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        2        2      2
>   ------ + ------ + ----- + ----
     10  3    10  2    8  2    6
    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n103
L11n102
L11n102
L11n104
L11n104