PD Presentation: |
X6172 X3,13,4,12 X7,16,8,17 X17,22,18,5 X13,18,14,19 X21,14,22,15 X9,20,10,21 X15,8,16,9 X19,10,20,11 X2536 X11,1,12,4 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 102]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 102]] |
Out[4]= | PD[X[6, 1, 7, 2], X[3, 13, 4, 12], X[7, 16, 8, 17], X[17, 22, 18, 5],
> X[13, 18, 14, 19], X[21, 14, 22, 15], X[9, 20, 10, 21], X[15, 8, 16, 9],
> X[19, 10, 20, 11], X[2, 5, 3, 6], X[11, 1, 12, 4]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, -2, 11}, {10, -1, -3, 8, -7, 9, -11, 2, -5, 6, -8, 3, -4, 5,
> -9, 7, -6, 4}] |
In[6]:= | Jones[L][q] |
Out[6]= | 3 6 10 13 13 14 10 7 3
----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + ------- - Sqrt[q]
17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -28 4 2 2 4 5 2 2 4 2 3 2
-1 - q - --- - --- - --- + --- + --- + --- + --- + -- - -- + -- + q
26 22 20 18 14 12 10 8 6 4
q q q q q q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 102]][a, z] |
Out[8]= | 3 5 7 9
-2 a 2 a a a 3 5 7 3 5 3
----- + ---- + -- - -- - a z - 3 a z + 5 a z - a z - a z + 5 a z -
z z z z
7 3 3 5 5 5
> 2 a z + a z + 2 a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 102]][a, z] |
Out[9]= | 3 5 7 9
4 6 8 10 2 a 2 a a a 3 5
2 a - 4 a - 9 a - 4 a - ---- - ---- + -- + -- - a z + 7 a z + 15 a z +
z z z z
7 9 2 2 4 2 6 2 8 2 10 2
> 9 a z + 2 a z - a z - 3 a z + 12 a z + 25 a z + 11 a z +
3 3 3 5 3 7 3 9 3 2 4 4 4
> 2 a z - 7 a z - 33 a z - 25 a z - a z + 5 a z - a z -
6 4 8 4 10 4 5 3 5 5 5 7 5
> 24 a z - 24 a z - 6 a z - a z + 9 a z + 27 a z + 20 a z +
9 5 2 6 4 6 6 6 8 6 3 7 5 7
> 3 a z - 3 a z + 7 a z + 23 a z + 13 a z - 5 a z - 7 a z -
7 7 9 7 4 8 6 8 8 8 5 9 7 9
> 5 a z - 3 a z - 5 a z - 10 a z - 5 a z - 2 a z - 2 a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 4 5 3 3 3 7 3 6 7
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 18 7 16 6 14 6 14 5 12 5 12 4 10 4
q q q t q t q t q t q t q t q t
7 6 7 7 3 7 t 2 2
> ------ + ----- + ----- + ----- + ---- + ---- + 2 t + -- + q t
10 3 8 3 8 2 6 2 6 4 2
q t q t q t q t q t q t q |