PD Presentation: |
X6172 X12,3,13,4 X13,21,14,20 X16,7,17,8 X8,19,9,20 X18,9,19,10 X10,17,11,18 X15,5,16,22 X21,15,22,14 X2536 X4,11,1,12 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 101]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 101]] |
Out[4]= | PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[13, 21, 14, 20], X[16, 7, 17, 8],
> X[8, 19, 9, 20], X[18, 9, 19, 10], X[10, 17, 11, 18], X[15, 5, 16, 22],
> X[21, 15, 22, 14], X[2, 5, 3, 6], X[4, 11, 1, 12]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, 2, -11}, {10, -1, 4, -5, 6, -7, 11, -2, -3, 9, -8, -4, 7,
> -6, 5, 3, -9, 8}] |
In[6]:= | Jones[L][q] |
Out[6]= | -2 4 7 10 12 11 10 3/2 5/2
----- + ----- - ---- + ---- - ---- + ---- - ------- + 7 Sqrt[q] - 4 q + q
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -22 3 -16 -14 4 -10 2 3 -2 2 6 8
3 + q + --- + q + q - --- + q + -- + -- - q - 2 q + 2 q - q
20 12 6 4
q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 101]][a, z] |
Out[8]= | 3 5 7 3
a 2 a 2 a a 5 z 3 3 3 5 3 5 3 5
-(-) + ---- - ---- + -- - a z - a z + -- - a z - a z + a z - a z - a z
z z z z a |
In[9]:= | Kauffman[Link[11, NonAlternating, 101]][a, z] |
Out[9]= | 3 5 7
4 a 2 a 2 a a 3 5 7 2 2 2
a + - + ---- + ---- + -- - 2 a z - 6 a z - 9 a z - 5 a z - z - 2 a z -
z z z z
3 4
4 2 6 2 3 z 3 3 3 5 3 7 3 4 z
> 4 a z - 3 a z + ---- - a z - a z + 11 a z + 8 a z + 8 z - -- +
a 2
a
5
2 4 4 4 6 4 4 z 5 3 5 5 5 7 5
> 6 a z + a z + 4 a z - ---- + 8 a z + 13 a z - 2 a z - 3 a z -
a
6 4 6 7 3 7 2 8 4 8 6 8 3 9
> 7 z + 7 a z - 7 a z - 7 a z - 4 a z - 5 a z - a z - a z -
5 9
> a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 5 2 2 2 5 3 6 4 6
6 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- +
2 14 6 12 5 10 5 10 4 8 4 8 3 6 3 6 2
q q t q t q t q t q t q t q t q t
6 5 6 2 2 2 4 2 6 3
> ----- + ---- + ---- + 3 t + 4 q t + q t + 3 q t + q t
4 2 4 2
q t q t q t |