© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a335
L11a335
L11a337
L11a337
L11a336
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a336

Visit L11a336's page at Knotilus!

Acknowledgement

L11a336 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X8,9,1,10 X14,3,15,4 X22,11,9,12 X2,15,3,16 X4,19,5,20 X20,5,21,6 X18,21,19,22 X6,13,7,14 X16,7,17,8 X12,17,13,18

Gauss Code: {{1, -5, 3, -6, 7, -9, 10, -2}, {2, -1, 4, -11, 9, -3, 5, -10, 11, -8, 6, -7, 8, -4}}

Jones Polynomial: q-27/2 - 5q-25/2 + 10q-23/2 - 16q-21/2 + 21q-19/2 - 23q-17/2 + 23q-15/2 - 20q-13/2 + 13q-11/2 - 8q-9/2 + 3q-7/2 - q-5/2

A2 (sl(3)) Invariant: - q-42 + 4q-38 - 2q-36 + q-34 + 2q-32 - 5q-30 + 3q-28 - 2q-26 + 2q-24 + 3q-22 - 2q-20 + 6q-18 - 2q-16 + 3q-12 - 2q-10 + q-8

HOMFLY-PT Polynomial: - a5z - 2a5z3 - a5z5 - a7z-1 - 5a7z - 7a7z3 - 3a7z5 + a9z-1 - 2a9z - 6a9z3 - 3a9z5 + 5a11z + 4a11z3 - a13z

Kauffman Polynomial: - a5z + 2a5z3 - a5z5 - a6z2 + 4a6z4 - 3a6z6 - a7z-1 + 6a7z - 10a7z3 + 10a7z5 - 6a7z7 + a8 - 3a8z2 - a8z4 + 7a8z6 - 7a8z8 - a9z-1 + 3a9z - 9a9z3 + 7a9z5 + 2a9z7 - 6a9z9 + 11a10z2 - 36a10z4 + 40a10z6 - 15a10z8 - 2a10z10 - a11z - 7a11z3 + 3a11z5 + 18a11z7 - 13a11z9 + 15a12z2 - 43a12z4 + 51a12z6 - 17a12z8 - 2a12z10 + 2a13z - 14a13z3 + 17a13z5 + 5a13z7 - 7a13z9 + 2a14z2 - 11a14z4 + 20a14z6 - 9a14z8 - a15z - 4a15z3 + 10a15z5 - 5a15z7 + a16z4 - a16z6

Khovanov Homology:
trqj r = -11r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4           1
j = -6          31
j = -8         5  
j = -10        83  
j = -12       125   
j = -14      118    
j = -16     1212     
j = -18    911      
j = -20   712       
j = -22  410        
j = -24 16         
j = -26 4          
j = -281           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 336]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 336]]
Out[4]=   
PD[X[10, 1, 11, 2], X[8, 9, 1, 10], X[14, 3, 15, 4], X[22, 11, 9, 12], 
 
>   X[2, 15, 3, 16], X[4, 19, 5, 20], X[20, 5, 21, 6], X[18, 21, 19, 22], 
 
>   X[6, 13, 7, 14], X[16, 7, 17, 8], X[12, 17, 13, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -5, 3, -6, 7, -9, 10, -2}, 
 
>   {2, -1, 4, -11, 9, -3, 5, -10, 11, -8, 6, -7, 8, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(27/2)     5      10      16      21      23      23      20      13
q        - ----- + ----- - ----- + ----- - ----- + ----- - ----- + ----- - 
            25/2    23/2    21/2    19/2    17/2    15/2    13/2    11/2
           q       q       q       q       q       q       q       q
 
     8      3      -(5/2)
>   ---- + ---- - q
     9/2    7/2
    q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -42    4     2     -34    2     5     3     2     2     3     2     6
-q    + --- - --- + q    + --- - --- + --- - --- + --- + --- - --- + --- - 
         38    36           32    30    28    26    24    22    20    18
        q     q            q     q     q     q     q     q     q     q
 
     2     3     2     -8
>   --- + --- - --- + q
     16    12    10
    q     q     q
In[8]:=
HOMFLYPT[Link[11, Alternating, 336]][a, z]
Out[8]=   
   7     9
  a     a     5        7        9        11      13        5  3      7  3
-(--) + -- - a  z - 5 a  z - 2 a  z + 5 a   z - a   z - 2 a  z  - 7 a  z  - 
  z     z
 
       9  3      11  3    5  5      7  5      9  5
>   6 a  z  + 4 a   z  - a  z  - 3 a  z  - 3 a  z
In[9]:=
Kauffman[Link[11, Alternating, 336]][a, z]
Out[9]=   
      7    9
 8   a    a     5        7        9      11        13      15      6  2
a  - -- - -- - a  z + 6 a  z + 3 a  z - a   z + 2 a   z - a   z - a  z  - 
     z    z
 
       8  2       10  2       12  2      14  2      5  3       7  3      9  3
>   3 a  z  + 11 a   z  + 15 a   z  + 2 a   z  + 2 a  z  - 10 a  z  - 9 a  z  - 
 
       11  3       13  3      15  3      6  4    8  4       10  4       12  4
>   7 a   z  - 14 a   z  - 4 a   z  + 4 a  z  - a  z  - 36 a   z  - 43 a   z  - 
 
        14  4    16  4    5  5       7  5      9  5      11  5       13  5
>   11 a   z  + a   z  - a  z  + 10 a  z  + 7 a  z  + 3 a   z  + 17 a   z  + 
 
        15  5      6  6      8  6       10  6       12  6       14  6
>   10 a   z  - 3 a  z  + 7 a  z  + 40 a   z  + 51 a   z  + 20 a   z  - 
 
     16  6      7  7      9  7       11  7      13  7      15  7      8  8
>   a   z  - 6 a  z  + 2 a  z  + 18 a   z  + 5 a   z  - 5 a   z  - 7 a  z  - 
 
        10  8       12  8      14  8      9  9       11  9      13  9
>   15 a   z  - 17 a   z  - 9 a   z  - 6 a  z  - 13 a   z  - 7 a   z  - 
 
       10  10      12  10
>   2 a   z   - 2 a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4      1         4         1        6        4        10       7
q   + q   + ------- + ------- + ------- + ------ + ------ + ------ + ------ + 
             28  11    26  10    24  10    24  9    22  9    22  8    20  8
            q   t     q   t     q   t     q   t    q   t    q   t    q   t
 
      12       9        11       12       12       11       8        12
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     20  7    18  7    18  6    16  6    16  5    14  5    14  4    12  4
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      5        8        3        5      3
>   ------ + ------ + ------ + ----- + ----
     12  3    10  3    10  2    8  2    6
    q   t    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a336
L11a335
L11a335
L11a337
L11a337