© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a334
L11a334
L11a336
L11a336
L11a335
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a335

Visit L11a335's page at Knotilus!

Acknowledgement

L11a335 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X14,3,15,4 X16,7,17,8 X8,9,1,10 X2,15,3,16 X22,18,9,17 X18,12,19,11 X4,19,5,20 X20,5,21,6 X6,13,7,14 X12,22,13,21

Gauss Code: {{1, -5, 2, -8, 9, -10, 3, -4}, {4, -1, 7, -11, 10, -2, 5, -3, 6, -7, 8, -9, 11, -6}}

Jones Polynomial: - q-19/2 + 4q-17/2 - 11q-15/2 + 17q-13/2 - 23q-11/2 + 26q-9/2 - 26q-7/2 + 22q-5/2 - 16q-3/2 + 9q-1/2 - 4q1/2 + q3/2

A2 (sl(3)) Invariant: q-28 - 2q-26 + 4q-24 + 2q-22 - q-20 + 7q-18 - 3q-16 + 3q-14 - q-12 - 3q-10 + 4q-8 - 5q-6 + 4q-4 - 2 + 2q2 - q4

HOMFLY-PT Polynomial: az + 2az3 + az5 + a3z-1 - 2a3z - 4a3z3 - 3a3z5 - a3z7 - 3a5z-1 - 6a5z - 5a5z3 - 3a5z5 - a5z7 + 2a7z-1 + 3a7z + 2a7z3 + a7z5

Kauffman Polynomial: - z2 + 2z4 - z6 + az - 6az3 + 9az5 - 4az7 - a2 + 2a2z2 - 8a2z4 + 14a2z6 - 7a2z8 + a3z-1 + a3z - 7a3z3 + 5a3z5 + 8a3z7 - 7a3z9 - 3a4 + 17a4z2 - 36a4z4 + 39a4z6 - 12a4z8 - 3a4z10 + 3a5z-1 - 12a5z + 16a5z3 - 20a5z5 + 31a5z7 - 17a5z9 - 3a6 + 15a6z2 - 39a6z4 + 48a6z6 - 18a6z8 - 3a6z10 + 2a7z-1 - 6a7z + 3a7z3 + a7z5 + 9a7z7 - 10a7z9 + a8z2 - 10a8z4 + 20a8z6 - 13a8z8 + 6a9z - 13a9z3 + 16a9z5 - 10a9z7 + 3a10z4 - 4a10z6 + a11z3 - a11z5

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 4           1
j = 2          3 
j = 0         61 
j = -2        103  
j = -4       137   
j = -6      139    
j = -8     1313     
j = -10    1013      
j = -12   713       
j = -14  410        
j = -16  7         
j = -1814          
j = -201           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 335]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 335]]
Out[4]=   
PD[X[10, 1, 11, 2], X[14, 3, 15, 4], X[16, 7, 17, 8], X[8, 9, 1, 10], 
 
>   X[2, 15, 3, 16], X[22, 18, 9, 17], X[18, 12, 19, 11], X[4, 19, 5, 20], 
 
>   X[20, 5, 21, 6], X[6, 13, 7, 14], X[12, 22, 13, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -5, 2, -8, 9, -10, 3, -4}, 
 
>   {4, -1, 7, -11, 10, -2, 5, -3, 6, -7, 8, -9, 11, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(19/2)     4      11      17      23      26     26     22     16
-q        + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + 
             17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
            q       q       q       q       q      q      q      q
 
       9                   3/2
>   ------- - 4 Sqrt[q] + q
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -28    2     4     2     -20    7     3     3     -12    3    4    5
-2 + q    - --- + --- + --- - q    + --- - --- + --- - q    - --- + -- - -- + 
             26    24    22           18    16    14           10    8    6
            q     q     q            q     q     q            q     q    q
 
    4       2    4
>   -- + 2 q  - q
     4
    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 335]][a, z]
Out[8]=   
 3      5      7
a    3 a    2 a             3        5        7          3      3  3
-- - ---- + ---- + a z - 2 a  z - 6 a  z + 3 a  z + 2 a z  - 4 a  z  - 
z     z      z
 
       5  3      7  3      5      3  5      5  5    7  5    3  7    5  7
>   5 a  z  + 2 a  z  + a z  - 3 a  z  - 3 a  z  + a  z  - a  z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 335]][a, z]
Out[9]=   
                     3      5      7
  2      4      6   a    3 a    2 a           3         5        7        9
-a  - 3 a  - 3 a  + -- + ---- + ---- + a z + a  z - 12 a  z - 6 a  z + 6 a  z - 
                    z     z      z
 
     2      2  2       4  2       6  2    8  2        3      3  3       5  3
>   z  + 2 a  z  + 17 a  z  + 15 a  z  + a  z  - 6 a z  - 7 a  z  + 16 a  z  + 
 
       7  3       9  3    11  3      4      2  4       4  4       6  4
>   3 a  z  - 13 a  z  + a   z  + 2 z  - 8 a  z  - 36 a  z  - 39 a  z  - 
 
        8  4      10  4        5      3  5       5  5    7  5       9  5
>   10 a  z  + 3 a   z  + 9 a z  + 5 a  z  - 20 a  z  + a  z  + 16 a  z  - 
 
     11  5    6       2  6       4  6       6  6       8  6      10  6
>   a   z  - z  + 14 a  z  + 39 a  z  + 48 a  z  + 20 a  z  - 4 a   z  - 
 
         7      3  7       5  7      7  7       9  7      2  8       4  8
>   4 a z  + 8 a  z  + 31 a  z  + 9 a  z  - 10 a  z  - 7 a  z  - 12 a  z  - 
 
        6  8       8  8      3  9       5  9       7  9      4  10      6  10
>   18 a  z  - 13 a  z  - 7 a  z  - 17 a  z  - 10 a  z  - 3 a  z   - 3 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
7    10     1        1        4        7        4        10       7
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    20  8    18  8    18  7    16  6    14  6    14  5    12  5
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      13       10       13      13      13      13      9      13
>   ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + 6 t + 
     12  4    10  4    10  3    8  3    8  2    6  2    6      4
    q   t    q   t    q   t    q  t    q  t    q  t    q  t   q  t
 
    3 t    2      2  2    4  3
>   --- + t  + 3 q  t  + q  t
     2
    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a335
L11a334
L11a334
L11a336
L11a336