© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a293
L11a293
L11a295
L11a295
L11a294
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a294

Visit L11a294's page at Knotilus!

Acknowledgement

L11a294 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X12,3,13,4 X22,20,9,19 X18,7,19,8 X16,5,17,6 X4,15,5,16 X6,17,7,18 X14,22,15,21 X20,14,21,13 X2,9,3,10 X8,11,1,12

Gauss Code: {{1, -10, 2, -6, 5, -7, 4, -11}, {10, -1, 11, -2, 9, -8, 6, -5, 7, -4, 3, -9, 8, -3}}

Jones Polynomial: - q-19/2 + 2q-17/2 - 5q-15/2 + 8q-13/2 - 11q-11/2 + 12q-9/2 - 13q-7/2 + 11q-5/2 - 8q-3/2 + 5q-1/2 - 3q1/2 + q3/2

A2 (sl(3)) Invariant: q-28 + 2q-24 + 2q-22 + 3q-18 - q-16 + 2q-14 + q-12 - q-10 + 2q-8 - 3q-6 + q-4 + q2 - q4

HOMFLY-PT Polynomial: az + 3az3 + az5 + a3z-1 - 4a3z3 - 4a3z5 - a3z7 - 3a5z-1 - 10a5z - 10a5z3 - 5a5z5 - a5z7 + 2a7z-1 + 5a7z + 4a7z3 + a7z5

Kauffman Polynomial: - z2 + 3z4 - z6 + az - 7az3 + 10az5 - 3az7 - a2 + 4a2z2 - 11a2z4 + 13a2z6 - 4a2z8 + a3z-1 - a3z - a3z3 - 2a3z5 + 7a3z7 - 3a3z9 - 3a4 + 20a4z2 - 36a4z4 + 23a4z6 - 4a4z8 - a4z10 + 3a5z-1 - 16a5z + 34a5z3 - 39a5z5 + 22a5z7 - 6a5z9 - 3a6 + 18a6z2 - 30a6z4 + 16a6z6 - 3a6z8 - a6z10 + 2a7z-1 - 10a7z + 21a7z3 - 20a7z5 + 9a7z7 - 3a7z9 + 2a8z2 - 4a8z4 + 5a8z6 - 3a8z8 + 2a9z - 4a9z3 + 6a9z5 - 3a9z7 - a10z2 + 4a10z4 - 2a10z6 - 2a11z + 3a11z3 - a11z5

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 4           1
j = 2          2 
j = 0         31 
j = -2        52  
j = -4       74   
j = -6      64    
j = -8     67     
j = -10    56      
j = -12   36       
j = -14  25        
j = -16  3         
j = -1812          
j = -201           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 294]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 294]]
Out[4]=   
PD[X[10, 1, 11, 2], X[12, 3, 13, 4], X[22, 20, 9, 19], X[18, 7, 19, 8], 
 
>   X[16, 5, 17, 6], X[4, 15, 5, 16], X[6, 17, 7, 18], X[14, 22, 15, 21], 
 
>   X[20, 14, 21, 13], X[2, 9, 3, 10], X[8, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -6, 5, -7, 4, -11}, 
 
>   {10, -1, 11, -2, 9, -8, 6, -5, 7, -4, 3, -9, 8, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(19/2)     2       5       8      11      12     13     11     8
-q        + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + 
             17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
            q       q       q       q       q      q      q      q
 
       5                   3/2
>   ------- - 3 Sqrt[q] + q
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -28    2     2     3     -16    2     -12    -10   2    3     -4    2    4
q    + --- + --- + --- - q    + --- + q    - q    + -- - -- + q   + q  - q
        24    22    18           14                  8    6
       q     q     q            q                   q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 294]][a, z]
Out[8]=   
 3      5      7
a    3 a    2 a              5        7          3      3  3       5  3
-- - ---- + ---- + a z - 10 a  z + 5 a  z + 3 a z  - 4 a  z  - 10 a  z  + 
z     z      z
 
       7  3      5      3  5      5  5    7  5    3  7    5  7
>   4 a  z  + a z  - 4 a  z  - 5 a  z  + a  z  - a  z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 294]][a, z]
Out[9]=   
                     3      5      7
  2      4      6   a    3 a    2 a           3         5         7
-a  - 3 a  - 3 a  + -- + ---- + ---- + a z - a  z - 16 a  z - 10 a  z + 
                    z     z      z
 
       9        11      2      2  2       4  2       6  2      8  2    10  2
>   2 a  z - 2 a   z - z  + 4 a  z  + 20 a  z  + 18 a  z  + 2 a  z  - a   z  - 
 
         3    3  3       5  3       7  3      9  3      11  3      4
>   7 a z  - a  z  + 34 a  z  + 21 a  z  - 4 a  z  + 3 a   z  + 3 z  - 
 
        2  4       4  4       6  4      8  4      10  4         5      3  5
>   11 a  z  - 36 a  z  - 30 a  z  - 4 a  z  + 4 a   z  + 10 a z  - 2 a  z  - 
 
        5  5       7  5      9  5    11  5    6       2  6       4  6
>   39 a  z  - 20 a  z  + 6 a  z  - a   z  - z  + 13 a  z  + 23 a  z  + 
 
        6  6      8  6      10  6        7      3  7       5  7      7  7
>   16 a  z  + 5 a  z  - 2 a   z  - 3 a z  + 7 a  z  + 22 a  z  + 9 a  z  - 
 
       9  7      2  8      4  8      6  8      8  8      3  9      5  9
>   3 a  z  - 4 a  z  - 4 a  z  - 3 a  z  - 3 a  z  - 3 a  z  - 6 a  z  - 
 
       7  9    4  10    6  10
>   3 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
4    5      1        1        2        3        2        5        3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    20  8    18  8    18  7    16  6    14  6    14  5    12  5
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      6        5        6        6       7       6      4      7
>   ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + 3 t + 
     12  4    10  4    10  3    8  3    8  2    6  2    6      4
    q   t    q   t    q   t    q  t    q  t    q  t    q  t   q  t
 
    2 t    2      2  2    4  3
>   --- + t  + 2 q  t  + q  t
     2
    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a294
L11a293
L11a293
L11a295
L11a295