© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a294
L11a294
L11a296
L11a296
L11a295
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a295

Visit L11a295's page at Knotilus!

Acknowledgement

L11a295 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X12,3,13,4 X22,20,9,19 X18,7,19,8 X6,15,7,16 X16,5,17,6 X4,17,5,18 X14,22,15,21 X20,14,21,13 X2,9,3,10 X8,11,1,12

Gauss Code: {{1, -10, 2, -7, 6, -5, 4, -11}, {10, -1, 11, -2, 9, -8, 5, -6, 7, -4, 3, -9, 8, -3}}

Jones Polynomial: - q-17/2 + 2q-15/2 - 6q-13/2 + 9q-11/2 - 13q-9/2 + 16q-7/2 - 17q-5/2 + 15q-3/2 - 12q-1/2 + 8q1/2 - 4q3/2 + q5/2

A2 (sl(3)) Invariant: q-26 + 2q-22 + 5q-20 + 3q-16 + q-14 - 4q-12 + q-10 - 2q-8 + 2q-6 + q-4 - 2q-2 + 3 - 3q2 + 2q6 - q8

HOMFLY-PT Polynomial: a-1z3 + az - az5 + a3z-1 - 3a3z - 4a3z3 - 2a3z5 - 3a5z-1 - 4a5z - 2a5z3 - a5z5 + 2a7z-1 + 2a7z + a7z3

Kauffman Polynomial: - a-2z4 + 2a-1z3 - 4a-1z5 - 2z2 + 8z4 - 8z6 + az - 6az3 + 13az5 - 10az7 - a2 - a2z2 + 3a2z4 + 7a2z6 - 8a2z8 + a3z-1 + a3z - 14a3z3 + 23a3z5 - 5a3z7 - 4a3z9 - 3a4 + 15a4z2 - 30a4z4 + 33a4z6 - 11a4z8 - a4z10 + 3a5z-1 - 14a5z + 18a5z3 - 15a5z5 + 17a5z7 - 7a5z9 - 3a6 + 14a6z2 - 30a6z4 + 25a6z6 - 5a6z8 - a6z10 + 2a7z-1 - 10a7z + 16a7z3 - 16a7z5 + 11a7z7 - 3a7z9 - 6a8z4 + 7a8z6 - 2a8z8 + 4a9z - 8a9z3 + 5a9z5 - a9z7

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 6           1
j = 4          3 
j = 2         51 
j = 0        73  
j = -2       96   
j = -4      86    
j = -6     89     
j = -8    58      
j = -10   48       
j = -12  25        
j = -14  4         
j = -1612          
j = -181           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 295]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 295]]
Out[4]=   
PD[X[10, 1, 11, 2], X[12, 3, 13, 4], X[22, 20, 9, 19], X[18, 7, 19, 8], 
 
>   X[6, 15, 7, 16], X[16, 5, 17, 6], X[4, 17, 5, 18], X[14, 22, 15, 21], 
 
>   X[20, 14, 21, 13], X[2, 9, 3, 10], X[8, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -7, 6, -5, 4, -11}, 
 
>   {10, -1, 11, -2, 9, -8, 5, -6, 7, -4, 3, -9, 8, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)     2       6       9      13     16     17     15      12
-q        + ----- - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 
             15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q       q      q      q      q
 
                   3/2    5/2
>   8 Sqrt[q] - 4 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -26    2     5     3     -14    4     -10   2    2     -4   2       2
3 + q    + --- + --- + --- + q    - --- + q    - -- + -- + q   - -- - 3 q  + 
            22    20    16           12           8    6          2
           q     q     q            q            q    q          q
 
       6    8
>   2 q  - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 295]][a, z]
Out[8]=   
 3      5      7                                     3
a    3 a    2 a             3        5        7     z       3  3      5  3
-- - ---- + ---- + a z - 3 a  z - 4 a  z + 2 a  z + -- - 4 a  z  - 2 a  z  + 
z     z      z                                      a
 
     7  3      5      3  5    5  5
>   a  z  - a z  - 2 a  z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 295]][a, z]
Out[9]=   
                     3      5      7
  2      4      6   a    3 a    2 a           3         5         7
-a  - 3 a  - 3 a  + -- + ---- + ---- + a z + a  z - 14 a  z - 10 a  z + 
                    z     z      z
 
                                                     3
       9        2    2  2       4  2       6  2   2 z         3       3  3
>   4 a  z - 2 z  - a  z  + 15 a  z  + 14 a  z  + ---- - 6 a z  - 14 a  z  + 
                                                   a
 
                                            4
        5  3       7  3      9  3      4   z       2  4       4  4       6  4
>   18 a  z  + 16 a  z  - 8 a  z  + 8 z  - -- + 3 a  z  - 30 a  z  - 30 a  z  - 
                                            2
                                           a
 
                 5
       8  4   4 z          5       3  5       5  5       7  5      9  5
>   6 a  z  - ---- + 13 a z  + 23 a  z  - 15 a  z  - 16 a  z  + 5 a  z  - 
               a
 
       6      2  6       4  6       6  6      8  6         7      3  7
>   8 z  + 7 a  z  + 33 a  z  + 25 a  z  + 7 a  z  - 10 a z  - 5 a  z  + 
 
        5  7       7  7    9  7      2  8       4  8      6  8      8  8
>   17 a  z  + 11 a  z  - a  z  - 8 a  z  - 11 a  z  - 5 a  z  - 2 a  z  - 
 
       3  9      5  9      7  9    4  10    6  10
>   4 a  z  - 7 a  z  - 3 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    6      1        1        2        4        2        5        4
7 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     2    18  8    16  8    16  7    14  6    12  6    12  5    10  5
    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      8        5       8       8       9       8      6      9
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + 3 t + 
     10  4    8  4    8  3    6  3    6  2    4  2    4      2
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
       2      2  2      4  2    6  3
>   5 q  t + q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a295
L11a294
L11a294
L11a296
L11a296