© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a292
L11a292
L11a294
L11a294
L11a293
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a293

Visit L11a293's page at Knotilus!

Acknowledgement

L11a293 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X20,14,21,13 X14,8,15,7 X16,6,17,5 X6,16,7,15 X4,21,5,22 X18,9,19,10 X22,17,9,18 X8,20,1,19

Gauss Code: {{1, -2, 3, -8, 6, -7, 5, -11}, {9, -1, 2, -3, 4, -5, 7, -6, 10, -9, 11, -4, 8, -10}}

Jones Polynomial: - q-15/2 + 3q-13/2 - 6q-11/2 + 10q-9/2 - 12q-7/2 + 13q-5/2 - 14q-3/2 + 11q-1/2 - 9q1/2 + 5q3/2 - 3q5/2 + q7/2

A2 (sl(3)) Invariant: q-22 - q-20 + q-18 - 2q-14 + q-12 - 3q-10 + 2q-8 + q-6 + q-4 + 4q-2 + 3q2 + q4 + q8 - q10

HOMFLY-PT Polynomial: - a-1z-1 + a-1z + 3a-1z3 + a-1z5 + az-1 - 4az3 - 4az5 - az7 - 3a3z - 5a3z3 - 4a3z5 - a3z7 + 2a5z + 3a5z3 + a5z5

Kauffman Polynomial: 4a-2z2 - 8a-2z4 + 5a-2z6 - a-2z8 - a-1z-1 - 2a-1z + 17a-1z3 - 28a-1z5 + 16a-1z7 - 3a-1z9 + 1 + 11z2 - 23z4 + 7z6 + 5z8 - 2z10 - az-1 + 17az3 - 47az5 + 38az7 - 9az9 + 10a2z2 - 38a2z4 + 34a2z6 - 4a2z8 - 2a2z10 + 6a3z - 19a3z3 + 13a3z5 + 10a3z7 - 6a3z9 - 3a4z2 - 5a4z4 + 22a4z6 - 10a4z8 + 4a5z - 15a5z3 + 26a5z5 - 12a5z7 - 6a6z2 + 15a6z4 - 10a6z6 + 3a7z3 - 6a7z5 - 3a8z4 - a9z3

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 8           1
j = 6          2 
j = 4         31 
j = 2        62  
j = 0       53   
j = -2      96    
j = -4     67     
j = -6    67      
j = -8   46       
j = -10  26        
j = -12 14         
j = -14 2          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 293]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 293]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[20, 14, 21, 13], 
 
>   X[14, 8, 15, 7], X[16, 6, 17, 5], X[6, 16, 7, 15], X[4, 21, 5, 22], 
 
>   X[18, 9, 19, 10], X[22, 17, 9, 18], X[8, 20, 1, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -8, 6, -7, 5, -11}, 
 
>   {9, -1, 2, -3, 4, -5, 7, -6, 10, -9, 11, -4, 8, -10}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(15/2)     3       6      10     12     13     14      11
-q        + ----- - ----- + ---- - ---- + ---- - ---- + ------- - 9 Sqrt[q] + 
             13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q      q      q      q
 
       3/2      5/2    7/2
>   5 q    - 3 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -22    -20    -18    2     -12    3    2     -6    -4   4       2    4    8
q    - q    + q    - --- + q    - --- + -- + q   + q   + -- + 3 q  + q  + q  - 
                      14           10    8                2
                     q            q     q                q
 
     10
>   q
In[8]:=
HOMFLYPT[Link[11, Alternating, 293]][a, z]
Out[8]=   
                                      3                                 5
   1     a   z      3        5     3 z         3      3  3      5  3   z
-(---) + - + - - 3 a  z + 2 a  z + ---- - 4 a z  - 5 a  z  + 3 a  z  + -- - 
  a z    z   a                      a                                  a
 
         5      3  5    5  5      7    3  7
>   4 a z  - 4 a  z  + a  z  - a z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 293]][a, z]
Out[9]=   
                                                 2
     1    a   2 z      3        5         2   4 z        2  2      4  2
1 - --- - - - --- + 6 a  z + 4 a  z + 11 z  + ---- + 10 a  z  - 3 a  z  - 
    a z   z    a                                2
                                               a
 
                  3
       6  2   17 z          3       3  3       5  3      7  3    9  3       4
>   6 a  z  + ----- + 17 a z  - 19 a  z  - 15 a  z  + 3 a  z  - a  z  - 23 z  - 
                a
 
       4                                                 5
    8 z        2  4      4  4       6  4      8  4   28 z          5
>   ---- - 38 a  z  - 5 a  z  + 15 a  z  - 3 a  z  - ----- - 47 a z  + 
      2                                                a
     a
 
                                              6
        3  5       5  5      7  5      6   5 z        2  6       4  6
>   13 a  z  + 26 a  z  - 6 a  z  + 7 z  + ---- + 34 a  z  + 22 a  z  - 
                                             2
                                            a
 
                   7                                           8
        6  6   16 z          7       3  7       5  7      8   z       2  8
>   10 a  z  + ----- + 38 a z  + 10 a  z  - 12 a  z  + 5 z  - -- - 4 a  z  - 
                 a                                             2
                                                              a
 
                  9
        4  8   3 z         9      3  9      10      2  10
>   10 a  z  - ---- - 9 a z  - 6 a  z  - 2 z   - 2 a  z
                a
In[10]:=
Kh[L][q, t]
Out[10]=   
7    9      1        2        1        4        2        6        4       6
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 4    2    16  6    14  5    12  5    12  4    10  4    10  3    8  3    8  2
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      6      7      6           6 t      2      2  2      2  3      4  3
>   ----- + ---- + ---- + 5 t + --- + 3 t  + 6 q  t  + 2 q  t  + 3 q  t  + 
     6  2    6      4            2
    q  t    q  t   q  t         q
 
     4  4      6  4    8  5
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a293
L11a292
L11a292
L11a294
L11a294