© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a286
L11a286
L11a288
L11a288
L11a287
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a287

Visit L11a287's page at Knotilus!

Acknowledgement

L11a287 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X12,4,13,3 X16,9,17,10 X20,12,21,11 X22,15,9,16 X14,6,15,5 X18,8,19,7 X4,14,5,13 X6,18,7,17 X8,20,1,19 X2,21,3,22

Gauss Code: {{1, -11, 2, -8, 6, -9, 7, -10}, {3, -1, 4, -2, 8, -6, 5, -3, 9, -7, 10, -4, 11, -5}}

Jones Polynomial: - q-5/2 + 3q-3/2 - 6q-1/2 + 10q1/2 - 14q3/2 + 15q5/2 - 16q7/2 + 14q9/2 - 11q11/2 + 6q13/2 - 3q15/2 + q17/2

A2 (sl(3)) Invariant: q-6 - q-4 + 2q-2 - 2 + q4 - 2q6 + 5q8 - 2q10 + 4q12 + q14 + q16 + 3q18 - 2q20 + q22 - q24

HOMFLY-PT Polynomial: - a-5z-1 + 3a-5z + 8a-5z3 + 5a-5z5 + a-5z7 + a-3z-1 - 5a-3z - 19a-3z3 - 18a-3z5 - 7a-3z7 - a-3z9 + 4a-1z + 8a-1z3 + 5a-1z5 + a-1z7

Kauffman Polynomial: a-10z2 - a-10z4 - a-9z + 3a-9z3 - 3a-9z5 - a-8z2 + 4a-8z4 - 5a-8z6 - a-7z - 5a-7z3 + 9a-7z5 - 7a-7z7 - 2a-6z2 - 4a-6z4 + 10a-6z6 - 7a-6z8 - a-5z-1 + a-5z3 + 6a-5z7 - 5a-5z9 + a-4 - 7a-4z4 + 14a-4z6 - 3a-4z8 - 2a-4z10 - a-3z-1 - 5a-3z + 26a-3z3 - 35a-3z5 + 29a-3z7 - 9a-3z9 + 4a-2z2 - 12a-2z4 + 11a-2z6 + a-2z8 - 2a-2z10 - 5a-1z + 13a-1z3 - 19a-1z5 + 15a-1z7 - 4a-1z9 + 4z2 - 14z4 + 12z6 - 3z8 - 4az3 + 4az5 - az7

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 18           1
j = 16          2 
j = 14         41 
j = 12        72  
j = 10       85   
j = 8      86    
j = 6     78     
j = 4    78      
j = 2   48       
j = 0  26        
j = -2 14         
j = -4 2          
j = -61           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 287]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 287]]
Out[4]=   
PD[X[10, 1, 11, 2], X[12, 4, 13, 3], X[16, 9, 17, 10], X[20, 12, 21, 11], 
 
>   X[22, 15, 9, 16], X[14, 6, 15, 5], X[18, 8, 19, 7], X[4, 14, 5, 13], 
 
>   X[6, 18, 7, 17], X[8, 20, 1, 19], X[2, 21, 3, 22]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 2, -8, 6, -9, 7, -10}, 
 
>   {3, -1, 4, -2, 8, -6, 5, -3, 9, -7, 10, -4, 11, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)    3        6                       3/2       5/2       7/2
-q       + ---- - ------- + 10 Sqrt[q] - 14 q    + 15 q    - 16 q    + 
            3/2   Sqrt[q]
           q
 
        9/2       11/2      13/2      15/2    17/2
>   14 q    - 11 q     + 6 q     - 3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -6    -4   2     4      6      8      10      12    14    16      18
-2 + q   - q   + -- + q  - 2 q  + 5 q  - 2 q   + 4 q   + q   + q   + 3 q   - 
                  2
                 q
 
       20    22    24
>   2 q   + q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 287]][a, z]
Out[8]=   
                                      3       3      3      5       5      5
   1       1     3 z   5 z   4 z   8 z    19 z    8 z    5 z    18 z    5 z
-(----) + ---- + --- - --- + --- + ---- - ----- + ---- + ---- - ----- + ---- + 
   5       3      5     3     a      5      3      a       5      3      a
  a  z    a  z   a     a            a      a              a      a
 
     7      7    7    9
    z    7 z    z    z
>   -- - ---- + -- - --
     5     3    a     3
    a     a          a
In[9]:=
Kauffman[Link[11, Alternating, 287]][a, z]
Out[9]=   
                                                  2     2      2      2
 -4    1      1     z    z    5 z   5 z      2   z     z    2 z    4 z
a   - ---- - ---- - -- - -- - --- - --- + 4 z  + --- - -- - ---- + ---- + 
       5      3      9    7    3     a            10    8     6      2
      a  z   a  z   a    a    a                  a     a     a      a
 
       3      3    3       3       3                     4       4      4
    3 z    5 z    z    26 z    13 z         3       4   z     4 z    4 z
>   ---- - ---- + -- + ----- + ----- - 4 a z  - 14 z  - --- + ---- - ---- - 
      9      7     5     3       a                       10     8      6
     a      a     a     a                               a      a      a
 
       4       4      5      5       5       5                       6
    7 z    12 z    3 z    9 z    35 z    19 z         5       6   5 z
>   ---- - ----- - ---- + ---- - ----- - ----- + 4 a z  + 12 z  - ---- + 
      4      2       9      7      3       a                        8
     a      a       a      a      a                                a
 
        6       6       6      7      7       7       7                    8
    10 z    14 z    11 z    7 z    6 z    29 z    15 z       7      8   7 z
>   ----- + ----- + ----- - ---- + ---- + ----- + ----- - a z  - 3 z  - ---- - 
      6       4       2       7      5      3       a                     6
     a       a       a       a      a      a                             a
 
       8    8      9      9      9      10      10
    3 z    z    5 z    9 z    4 z    2 z     2 z
>   ---- + -- - ---- - ---- - ---- - ----- - -----
      4     2     5      3     a       4       2
     a     a     a      a             a       a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                                          2
   2      4     1       2       1     2      4     6   4 q       4        6
8 q  + 7 q  + ----- + ----- + ----- + -- + ----- + - + ---- + 8 q  t + 7 q  t + 
               6  4    4  3    2  3    2    2  2   t    t
              q  t    q  t    q  t    t    q  t
 
       6  2      8  2      8  3      10  3      10  4      12  4      12  5
>   8 q  t  + 8 q  t  + 6 q  t  + 8 q   t  + 5 q   t  + 7 q   t  + 2 q   t  + 
 
       14  5    14  6      16  6    18  7
>   4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a287
L11a286
L11a286
L11a288
L11a288