© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a285
L11a285
L11a287
L11a287
L11a286
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a286

Visit L11a286's page at Knotilus!

Acknowledgement

L11a286 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X18,8,19,7 X16,9,17,10 X22,15,9,16 X4,21,5,22 X14,6,15,5 X20,14,21,13 X8,18,1,17 X6,20,7,19

Gauss Code: {{1, -2, 3, -7, 8, -11, 4, -10}, {5, -1, 2, -3, 9, -8, 6, -5, 10, -4, 11, -9, 7, -6}}

Jones Polynomial: - q-15/2 + 3q-13/2 - 5q-11/2 + 8q-9/2 - 11q-7/2 + 12q-5/2 - 12q-3/2 + 10q-1/2 - 9q1/2 + 5q3/2 - 3q5/2 + q7/2

A2 (sl(3)) Invariant: q-22 - q-20 - q-14 + 2q-12 - 2q-10 + q-8 + 4q-2 + 1 + 3q2 + q4 + q8 - q10

HOMFLY-PT Polynomial: - a-1z-1 + a-1z + 3a-1z3 + a-1z5 + az-1 - az - 4az3 - 4az5 - az7 - a3z - 4a3z3 - 4a3z5 - a3z7 + a5z + 3a5z3 + a5z5

Kauffman Polynomial: 4a-2z2 - 8a-2z4 + 5a-2z6 - a-2z8 - a-1z-1 - 2a-1z + 18a-1z3 - 28a-1z5 + 16a-1z7 - 3a-1z9 + 1 + 11z2 - 24z4 + 8z6 + 5z8 - 2z10 - az-1 - 2az + 22az3 - 52az5 + 40az7 - 9az9 + 12a2z2 - 44a2z4 + 35a2z6 - 3a2z8 - 2a2z10 + 2a3z - 9a3z3 + 15a3z7 - 6a3z9 + 4a4z2 - 17a4z4 + 25a4z6 - 9a4z8 + 2a5z - 9a5z3 + 19a5z5 - 9a5z7 + 8a6z4 - 7a6z6 + 3a7z3 - 5a7z5 + a8z2 - 3a8z4 - a9z3

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 8           1
j = 6          2 
j = 4         31 
j = 2        62  
j = 0       43   
j = -2      86    
j = -4     66     
j = -6    56      
j = -8   36       
j = -10  25        
j = -12 13         
j = -14 2          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 286]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 286]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[18, 8, 19, 7], 
 
>   X[16, 9, 17, 10], X[22, 15, 9, 16], X[4, 21, 5, 22], X[14, 6, 15, 5], 
 
>   X[20, 14, 21, 13], X[8, 18, 1, 17], X[6, 20, 7, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -7, 8, -11, 4, -10}, 
 
>   {5, -1, 2, -3, 9, -8, 6, -5, 10, -4, 11, -9, 7, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(15/2)     3       5      8      11     12     12      10
-q        + ----- - ----- + ---- - ---- + ---- - ---- + ------- - 9 Sqrt[q] + 
             13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q      q      q      q
 
       3/2      5/2    7/2
>   5 q    - 3 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    -20    -14    2     2     -8   4       2    4    8    10
1 + q    - q    - q    + --- - --- + q   + -- + 3 q  + q  + q  - q
                          12    10          2
                         q     q           q
In[8]:=
HOMFLYPT[Link[11, Alternating, 286]][a, z]
Out[8]=   
                                        3                                 5
   1     a   z          3      5     3 z         3      3  3      5  3   z
-(---) + - + - - a z - a  z + a  z + ---- - 4 a z  - 4 a  z  + 3 a  z  + -- - 
  a z    z   a                        a                                  a
 
         5      3  5    5  5      7    3  7
>   4 a z  - 4 a  z  + a  z  - a z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 286]][a, z]
Out[9]=   
                                                         2
     1    a   2 z              3        5         2   4 z        2  2
1 - --- - - - --- - 2 a z + 2 a  z + 2 a  z + 11 z  + ---- + 12 a  z  + 
    a z   z    a                                        2
                                                       a
 
                          3
       4  2    8  2   18 z          3      3  3      5  3      7  3    9  3
>   4 a  z  + a  z  + ----- + 22 a z  - 9 a  z  - 9 a  z  + 3 a  z  - a  z  - 
                        a
 
               4                                                 5
        4   8 z        2  4       4  4      6  4      8  4   28 z          5
>   24 z  - ---- - 44 a  z  - 17 a  z  + 8 a  z  - 3 a  z  - ----- - 52 a z  + 
              2                                                a
             a
 
                                   6                                       7
        5  5      7  5      6   5 z        2  6       4  6      6  6   16 z
>   19 a  z  - 5 a  z  + 8 z  + ---- + 35 a  z  + 25 a  z  - 7 a  z  + ----- + 
                                  2                                      a
                                 a
 
                                           8                          9
          7       3  7      5  7      8   z       2  8      4  8   3 z
>   40 a z  + 15 a  z  - 9 a  z  + 5 z  - -- - 3 a  z  - 9 a  z  - ---- - 
                                           2                        a
                                          a
 
         9      3  9      10      2  10
>   9 a z  - 6 a  z  - 2 z   - 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
6    8      1        2        1        3        2        5        3       6
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 4    2    16  6    14  5    12  5    12  4    10  4    10  3    8  3    8  2
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      5      6      6           6 t      2      2  2      2  3      4  3
>   ----- + ---- + ---- + 4 t + --- + 3 t  + 6 q  t  + 2 q  t  + 3 q  t  + 
     6  2    6      4            2
    q  t    q  t   q  t         q
 
     4  4      6  4    8  5
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a286
L11a285
L11a285
L11a287
L11a287