© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a284
L11a284
L11a286
L11a286
L11a285
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a285

Visit L11a285's page at Knotilus!

Acknowledgement

L11a285 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X20,14,21,13 X14,6,15,5 X4,21,5,22 X16,9,17,10 X22,15,9,16 X6,18,7,17 X18,8,19,7 X8,20,1,19

Gauss Code: {{1, -2, 3, -6, 5, -9, 10, -11}, {7, -1, 2, -3, 4, -5, 8, -7, 9, -10, 11, -4, 6, -8}}

Jones Polynomial: - q-13/2 + 3q-11/2 - 6q-9/2 + 11q-7/2 - 15q-5/2 + 16q-3/2 - 17q-1/2 + 14q1/2 - 11q3/2 + 6q5/2 - 3q7/2 + q9/2

A2 (sl(3)) Invariant: q-18 - q-16 + 2q-14 - 3q-12 + q-8 - 2q-6 + 5q-4 - 2q-2 + 5 + q2 + q4 + 3q6 - 2q8 + q10 - q12

HOMFLY-PT Polynomial: - a-1z-1 + 3a-1z + 8a-1z3 + 5a-1z5 + a-1z7 + az-1 - 6az - 19az3 - 18az5 - 7az7 - az9 + 3a3z + 8a3z3 + 5a3z5 + a3z7

Kauffman Polynomial: - 2a-4z2 + 3a-4z4 - a-4z6 + a-3z - 7a-3z3 + 9a-3z5 - 3a-3z7 - a-2z2 - 3a-2z4 + 9a-2z6 - 4a-2z8 - a-1z-1 - 2a-1z + 9a-1z3 - 9a-1z5 + 9a-1z7 - 4a-1z9 + 1 + 4z2 - 5z4 + 5z6 - 2z10 - az-1 - 6az + 32az3 - 44az5 + 28az7 - 9az9 + 7a2z2 - 17a2z4 + 11a2z6 - 2a2z8 - 2a2z10 - 2a3z + 8a3z3 - 15a3z5 + 11a3z7 - 5a3z9 + 2a4z2 - 12a4z4 + 13a4z6 - 6a4z8 + a5z - 6a5z3 + 10a5z5 - 5a5z7 - 2a6z2 + 6a6z4 - 3a6z6 + 2a7z3 - a7z5

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 10           1
j = 8          2 
j = 6         41 
j = 4        72  
j = 2       74   
j = 0      107    
j = -2     89     
j = -4    78      
j = -6   48       
j = -8  27        
j = -10 14         
j = -12 2          
j = -141           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 285]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 285]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[20, 14, 21, 13], 
 
>   X[14, 6, 15, 5], X[4, 21, 5, 22], X[16, 9, 17, 10], X[22, 15, 9, 16], 
 
>   X[6, 18, 7, 17], X[18, 8, 19, 7], X[8, 20, 1, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -6, 5, -9, 10, -11}, 
 
>   {7, -1, 2, -3, 4, -5, 8, -7, 9, -10, 11, -4, 6, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(13/2)     3      6      11     15     16      17
-q        + ----- - ---- + ---- - ---- + ---- - ------- + 14 Sqrt[q] - 
             11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q      q      q      q
 
        3/2      5/2      7/2    9/2
>   11 q    + 6 q    - 3 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -18    -16    2     3     -8   2    5    2     2    4      6      8
5 + q    - q    + --- - --- + q   - -- + -- - -- + q  + q  + 3 q  - 2 q  + 
                   14    12          6    4    2
                  q     q           q    q    q
 
     10    12
>   q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 285]][a, z]
Out[8]=   
                                       3                          5
   1     a   3 z              3     8 z          3      3  3   5 z          5
-(---) + - + --- - 6 a z + 3 a  z + ---- - 19 a z  + 8 a  z  + ---- - 18 a z  + 
  a z    z    a                      a                          a
 
               7
       3  5   z         7    3  7      9
>   5 a  z  + -- - 7 a z  + a  z  - a z
              a
In[9]:=
Kauffman[Link[11, Alternating, 285]][a, z]
Out[9]=   
                                                           2    2
     1    a   z    2 z              3      5        2   2 z    z       2  2
1 - --- - - + -- - --- - 6 a z - 2 a  z + a  z + 4 z  - ---- - -- + 7 a  z  + 
    a z   z    3    a                                     4     2
              a                                          a     a
 
                           3      3
       4  2      6  2   7 z    9 z          3      3  3      5  3      7  3
>   2 a  z  - 2 a  z  - ---- + ---- + 32 a z  + 8 a  z  - 6 a  z  + 2 a  z  - 
                          3     a
                         a
 
              4      4                                      5      5
       4   3 z    3 z        2  4       4  4      6  4   9 z    9 z
>   5 z  + ---- - ---- - 17 a  z  - 12 a  z  + 6 a  z  + ---- - ---- - 
             4      2                                      3     a
            a      a                                      a
 
                                                    6      6
          5       3  5       5  5    7  5      6   z    9 z        2  6
>   44 a z  - 15 a  z  + 10 a  z  - a  z  + 5 z  - -- + ---- + 11 a  z  + 
                                                    4     2
                                                   a     a
 
                            7      7                                     8
        4  6      6  6   3 z    9 z          7       3  7      5  7   4 z
>   13 a  z  - 3 a  z  - ---- + ---- + 28 a z  + 11 a  z  - 5 a  z  - ---- - 
                           3     a                                      2
                          a                                            a
 
                           9
       2  8      4  8   4 z         9      3  9      10      2  10
>   2 a  z  - 6 a  z  - ---- - 9 a z  - 5 a  z  - 2 z   - 2 a  z
                         a
In[10]:=
Kh[L][q, t]
Out[10]=   
     9      1        2        1        4        2       7       4       8
10 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
      2    14  6    12  5    10  5    10  4    8  4    8  3    6  3    6  2
     q    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      7      8      8              2        2  2      4  2      4  3
>   ----- + ---- + ---- + 7 t + 7 q  t + 4 q  t  + 7 q  t  + 2 q  t  + 
     4  2    4      2
    q  t    q  t   q  t
 
       6  3    6  4      8  4    10  5
>   4 q  t  + q  t  + 2 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a285
L11a284
L11a284
L11a286
L11a286