© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a283
L11a283
L11a285
L11a285
L11a284
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a284

Visit L11a284's page at Knotilus!

Acknowledgement

L11a284 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X22,11,9,12 X8,9,1,10 X2,22,3,21 X14,6,15,5 X12,4,13,3 X4,14,5,13 X16,20,17,19 X18,8,19,7 X6,18,7,17 X20,16,21,15

Gauss Code: {{1, -4, 6, -7, 5, -10, 9, -3}, {3, -1, 2, -6, 7, -5, 11, -8, 10, -9, 8, -11, 4, -2}}

Jones Polynomial: q-3/2 - 3q-1/2 + 6q1/2 - 11q3/2 + 13q5/2 - 16q7/2 + 16q9/2 - 14q11/2 + 10q13/2 - 6q15/2 + 3q17/2 - q19/2

A2 (sl(3)) Invariant: - q-4 + q-2 - 1 + 3q4 - q6 + 5q8 + q12 + 2q14 - 2q16 + 3q18 - 2q20 + q24 - q26 + q28

HOMFLY-PT Polynomial: - 2a-7z - 3a-7z3 - a-7z5 - a-5z-1 + a-5z + 5a-5z3 + 4a-5z5 + a-5z7 + a-3z-1 + 5a-3z + 6a-3z3 + 4a-3z5 + a-3z7 - 2a-1z - 3a-1z3 - a-1z5

Kauffman Polynomial: - a-11z + 2a-11z3 - a-11z5 - 3a-10z2 + 6a-10z4 - 3a-10z6 - a-9z + 5a-9z5 - 4a-9z7 + a-8z4 + 3a-8z6 - 4a-8z8 - 3a-7z + 4a-7z3 - a-7z5 + a-7z7 - 3a-7z9 + 3a-6z2 - 11a-6z4 + 13a-6z6 - 6a-6z8 - a-6z10 - a-5z-1 + 3a-5z3 - 7a-5z5 + 10a-5z7 - 6a-5z9 + a-4 + a-4z2 - 12a-4z4 + 17a-4z6 - 6a-4z8 - a-4z10 - a-3z-1 + 6a-3z - 11a-3z3 + 9a-3z5 + 2a-3z7 - 3a-3z9 - a-2z2 - 3a-2z4 + 9a-2z6 - 4a-2z8 + 3a-1z - 8a-1z3 + 9a-1z5 - 3a-1z7 - 2z2 + 3z4 - z6

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 20           1
j = 18          2 
j = 16         41 
j = 14        62  
j = 12       84   
j = 10      97    
j = 8     77     
j = 6    69      
j = 4   57       
j = 2  27        
j = 0 14         
j = -2 2          
j = -41           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 284]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 284]]
Out[4]=   
PD[X[10, 1, 11, 2], X[22, 11, 9, 12], X[8, 9, 1, 10], X[2, 22, 3, 21], 
 
>   X[14, 6, 15, 5], X[12, 4, 13, 3], X[4, 14, 5, 13], X[16, 20, 17, 19], 
 
>   X[18, 8, 19, 7], X[6, 18, 7, 17], X[20, 16, 21, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 6, -7, 5, -10, 9, -3}, 
 
>   {3, -1, 2, -6, 7, -5, 11, -8, 10, -9, 8, -11, 4, -2}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(3/2)      3                      3/2       5/2       7/2       9/2
q       - ------- + 6 Sqrt[q] - 11 q    + 13 q    - 16 q    + 16 q    - 
          Sqrt[q]
 
        11/2       13/2      15/2      17/2    19/2
>   14 q     + 10 q     - 6 q     + 3 q     - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -4    -2      4    6      8    12      14      16      18      20    24
-1 - q   + q   + 3 q  - q  + 5 q  + q   + 2 q   - 2 q   + 3 q   - 2 q   + q   - 
 
     26    28
>   q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 284]][a, z]
Out[8]=   
                                           3      3      3      3    5      5
   1       1     2 z   z    5 z   2 z   3 z    5 z    6 z    3 z    z    4 z
-(----) + ---- - --- + -- + --- - --- - ---- + ---- + ---- - ---- - -- + ---- + 
   5       3      7     5    3     a      7      5      3     a      7     5
  a  z    a  z   a     a    a            a      a      a            a     a
 
       5    5    7    7
    4 z    z    z    z
>   ---- - -- + -- + --
      3    a     5    3
     a          a    a
In[9]:=
Kauffman[Link[11, Alternating, 284]][a, z]
Out[9]=   
                                                           2      2    2    2
 -4    1      1      z    z    3 z   6 z   3 z      2   3 z    3 z    z    z
a   - ---- - ---- - --- - -- - --- + --- + --- - 2 z  - ---- + ---- + -- - -- + 
       5      3      11    9    7     3     a            10      6     4    2
      a  z   a  z   a     a    a     a                  a       a     a    a
 
       3      3      3       3      3             4    4       4       4
    2 z    4 z    3 z    11 z    8 z       4   6 z    z    11 z    12 z
>   ---- + ---- + ---- - ----- - ---- + 3 z  + ---- + -- - ----- - ----- - 
     11      7      5      3      a             10     8     6       4
    a       a      a      a                    a      a     a       a
 
       4    5       5    5      5      5      5           6      6       6
    3 z    z     5 z    z    7 z    9 z    9 z     6   3 z    3 z    13 z
>   ---- - --- + ---- - -- - ---- + ---- + ---- - z  - ---- + ---- + ----- + 
      2     11     9     7     5      3     a           10      8      6
     a     a      a     a     a      a                 a       a      a
 
        6      6      7    7       7      7      7      8      8      8
    17 z    9 z    4 z    z    10 z    2 z    3 z    4 z    6 z    6 z
>   ----- + ---- - ---- + -- + ----- + ---- - ---- - ---- - ---- - ---- - 
      4       2      9     7     5       3     a       8      6      4
     a       a      a     a     a       a             a      a      a
 
       8      9      9      9    10    10
    4 z    3 z    6 z    3 z    z     z
>   ---- - ---- - ---- - ---- - --- - ---
      2      7      5      3     6     4
     a      a      a      a     a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                           2
   2      4     1      -2     2     4   2 q       4        6        6  2
7 q  + 5 q  + ----- + t   + ----- + - + ---- + 7 q  t + 6 q  t + 9 q  t  + 
               4  3          2  2   t    t
              q  t          q  t
 
       8  2      8  3      10  3      10  4      12  4      12  5      14  5
>   7 q  t  + 7 q  t  + 9 q   t  + 7 q   t  + 8 q   t  + 4 q   t  + 6 q   t  + 
 
       14  6      16  6    16  7      18  7    20  8
>   2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a284
L11a283
L11a283
L11a285
L11a285