© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a252
L11a252
L11a254
L11a254
L11a253
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a253

Visit L11a253's page at Knotilus!

Acknowledgement

L11a253 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X14,5,15,6 X18,10,19,9 X22,18,9,17 X8,21,1,22 X20,15,21,16 X16,8,17,7 X4,13,5,14 X6,20,7,19

Gauss Code: {{1, -2, 3, -10, 4, -11, 9, -7}, {5, -1, 2, -3, 10, -4, 8, -9, 6, -5, 11, -8, 7, -6}}

Jones Polynomial: q-17/2 - 3q-15/2 + 5q-13/2 - 8q-11/2 + 10q-9/2 - 12q-7/2 + 11q-5/2 - 10q-3/2 + 7q-1/2 - 5q1/2 + 3q3/2 - q5/2

A2 (sl(3)) Invariant: - q-24 + q-22 - q-20 + 2q-18 + q-16 + q-14 + 3q-12 - q-10 + 4q-8 - q-6 + q-4 - 1 + q2 - q4 + q6

HOMFLY-PT Polynomial: - 3az - 7az3 - 5az5 - az7 - a3z-1 + 3a3z + 16a3z3 + 17a3z5 + 7a3z7 + a3z9 + a5z-1 - 2a5z - 7a5z3 - 5a5z5 - a5z7

Kauffman Polynomial: - 3a-1z3 + 4a-1z5 - a-1z7 + 4z2 - 14z4 + 13z6 - 3z8 - 4az + 14az3 - 24az5 + 18az7 - 4az9 + 6a2z2 - 16a2z4 + 8a2z6 + 4a2z8 - 2a2z10 - a3z-1 - 4a3z + 30a3z3 - 51a3z5 + 35a3z7 - 8a3z9 + a4 + 3a4z2 - 10a4z4 + 5a4z6 + 3a4z8 - 2a4z10 - a5z-1 - a5z + 11a5z3 - 17a5z5 + 12a5z7 - 4a5z9 - 3a6z4 + 6a6z6 - 4a6z8 - 2a7z + 2a7z3 + 3a7z5 - 4a7z7 + 4a8z4 - 4a8z6 - a9z + 4a9z3 - 3a9z5 + a10z2 - a10z4

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 6           1
j = 4          2 
j = 2         31 
j = 0        42  
j = -2       63   
j = -4      65    
j = -6     65     
j = -8    46      
j = -10   46       
j = -12  25        
j = -14 13         
j = -16 2          
j = -181           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 253]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 253]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[14, 5, 15, 6], 
 
>   X[18, 10, 19, 9], X[22, 18, 9, 17], X[8, 21, 1, 22], X[20, 15, 21, 16], 
 
>   X[16, 8, 17, 7], X[4, 13, 5, 14], X[6, 20, 7, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -10, 4, -11, 9, -7}, 
 
>   {5, -1, 2, -3, 10, -4, 8, -9, 6, -5, 11, -8, 7, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(17/2)     3       5       8      10     12     11     10       7
q        - ----- + ----- - ----- + ---- - ---- + ---- - ---- + ------- - 
            15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q       q      q      q      q
 
                   3/2    5/2
>   5 Sqrt[q] + 3 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -24    -22    -20    2     -16    -14    3     -10   4     -6    -4
-1 - q    + q    - q    + --- + q    + q    + --- - q    + -- - q   + q   + 
                           18                  12           8
                          q                   q            q
 
     2    4    6
>   q  - q  + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 253]][a, z]
Out[8]=   
   3     5
  a     a               3        5          3       3  3      5  3        5
-(--) + -- - 3 a z + 3 a  z - 2 a  z - 7 a z  + 16 a  z  - 7 a  z  - 5 a z  + 
  z     z
 
        3  5      5  5      7      3  7    5  7    3  9
>   17 a  z  - 5 a  z  - a z  + 7 a  z  - a  z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 253]][a, z]
Out[9]=   
      3    5
 4   a    a               3      5        7      9        2      2  2
a  - -- - -- - 4 a z - 4 a  z - a  z - 2 a  z - a  z + 4 z  + 6 a  z  + 
     z    z
 
                          3
       4  2    10  2   3 z          3       3  3       5  3      7  3
>   3 a  z  + a   z  - ---- + 14 a z  + 30 a  z  + 11 a  z  + 2 a  z  + 
                        a
 
                                                                            5
       9  3       4       2  4       4  4      6  4      8  4    10  4   4 z
>   4 a  z  - 14 z  - 16 a  z  - 10 a  z  - 3 a  z  + 4 a  z  - a   z  + ---- - 
                                                                          a
 
          5       3  5       5  5      7  5      9  5       6      2  6
>   24 a z  - 51 a  z  - 17 a  z  + 3 a  z  - 3 a  z  + 13 z  + 8 a  z  + 
 
                                   7
       4  6      6  6      8  6   z          7       3  7       5  7
>   5 a  z  + 6 a  z  - 4 a  z  - -- + 18 a z  + 35 a  z  + 12 a  z  - 
                                  a
 
       7  7      8      2  8      4  8      6  8        9      3  9      5  9
>   4 a  z  - 3 z  + 4 a  z  + 3 a  z  - 4 a  z  - 4 a z  - 8 a  z  - 4 a  z  - 
 
       2  10      4  10
>   2 a  z   - 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
5    6      1        2        1        3        2        5        4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    18  7    16  6    14  6    14  5    12  5    12  4    10  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      6        4       6       6      5      6           3 t      2      2  2
>   ------ + ----- + ----- + ----- + ---- + ---- + 4 t + --- + 2 t  + 3 q  t  + 
     10  3    8  3    8  2    6  2    6      4            2
    q   t    q  t    q  t    q  t    q  t   q  t         q
 
     2  3      4  3    6  4
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a253
L11a252
L11a252
L11a254
L11a254