© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a251
L11a251
L11a253
L11a253
L11a252
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a252

Visit L11a252's page at Knotilus!

Acknowledgement

L11a252 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X20,13,21,14 X12,4,13,3 X2,19,3,20 X14,5,15,6 X16,7,17,8 X8,9,1,10 X18,12,19,11 X6,15,7,16 X22,18,9,17 X4,22,5,21

Gauss Code: {{1, -4, 3, -11, 5, -9, 6, -7}, {7, -1, 8, -3, 2, -5, 9, -6, 10, -8, 4, -2, 11, -10}}

Jones Polynomial: q-17/2 - 4q-15/2 + 8q-13/2 - 13q-11/2 + 17q-9/2 - 20q-7/2 + 19q-5/2 - 17q-3/2 + 12q-1/2 - 8q1/2 + 4q3/2 - q5/2

A2 (sl(3)) Invariant: - q-24 + 2q-22 - 2q-20 + 3q-18 + 4q-12 - 3q-10 + 6q-8 - 2q-6 + 2q-4 + q-2 - 2 + 2q2 - 2q4 + q6

HOMFLY-PT Polynomial: - az - 4az3 - 4az5 - az7 - a3z-1 - a3z + 8a3z3 + 12a3z5 + 6a3z7 + a3z9 + a5z-1 - 4a5z3 - 4a5z5 - a5z7

Kauffman Polynomial: - 2a-1z3 + 3a-1z5 - a-1z7 + 3z2 - 13z4 + 14z6 - 4z8 - az + 7az3 - 21az5 + 21az7 - 6az9 + 7a2z2 - 28a2z4 + 24a2z6 - 3a2z10 - a3z-1 + 2a3z + 10a3z3 - 38a3z5 + 43a3z7 - 14a3z9 + a4 + 5a4z2 - 28a4z4 + 34a4z6 - 7a4z8 - 3a4z10 - a5z-1 + 3a5z - 6a5z3 + 4a5z5 + 10a5z7 - 8a5z9 - 5a6z4 + 16a6z6 - 11a6z8 - 5a7z3 + 14a7z5 - 11a7z7 - a8z2 + 7a8z4 - 8a8z6 + 2a9z3 - 4a9z5 - a10z4

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 6           1
j = 4          3 
j = 2         51 
j = 0        73  
j = -2       105   
j = -4      108    
j = -6     109     
j = -8    710      
j = -10   610       
j = -12  38        
j = -14 15         
j = -16 3          
j = -181           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 252]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 252]]
Out[4]=   
PD[X[10, 1, 11, 2], X[20, 13, 21, 14], X[12, 4, 13, 3], X[2, 19, 3, 20], 
 
>   X[14, 5, 15, 6], X[16, 7, 17, 8], X[8, 9, 1, 10], X[18, 12, 19, 11], 
 
>   X[6, 15, 7, 16], X[22, 18, 9, 17], X[4, 22, 5, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 3, -11, 5, -9, 6, -7}, 
 
>   {7, -1, 8, -3, 2, -5, 9, -6, 10, -8, 4, -2, 11, -10}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(17/2)     4       8      13      17     20     19     17      12
q        - ----- + ----- - ----- + ---- - ---- + ---- - ---- + ------- - 
            15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q       q      q      q      q
 
                   3/2    5/2
>   8 Sqrt[q] + 4 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -24    2     2     3     4     3    6    2    2     -2      2      4    6
-2 - q    + --- - --- + --- + --- - --- + -- - -- + -- + q   + 2 q  - 2 q  + q
             22    20    18    12    10    8    6    4
            q     q     q     q     q     q    q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 252]][a, z]
Out[8]=   
   3     5
  a     a           3          3      3  3      5  3        5       3  5
-(--) + -- - a z - a  z - 4 a z  + 8 a  z  - 4 a  z  - 4 a z  + 12 a  z  - 
  z     z
 
       5  5      7      3  7    5  7    3  9
>   4 a  z  - a z  + 6 a  z  - a  z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 252]][a, z]
Out[9]=   
      3    5
 4   a    a             3        5        2      2  2      4  2    8  2
a  - -- - -- - a z + 2 a  z + 3 a  z + 3 z  + 7 a  z  + 5 a  z  - a  z  - 
     z    z
 
       3
    2 z         3       3  3      5  3      7  3      9  3       4       2  4
>   ---- + 7 a z  + 10 a  z  - 6 a  z  - 5 a  z  + 2 a  z  - 13 z  - 28 a  z  - 
     a
 
                                               5
        4  4      6  4      8  4    10  4   3 z          5       3  5
>   28 a  z  - 5 a  z  + 7 a  z  - a   z  + ---- - 21 a z  - 38 a  z  + 
                                             a
 
       5  5       7  5      9  5       6       2  6       4  6       6  6
>   4 a  z  + 14 a  z  - 4 a  z  + 14 z  + 24 a  z  + 34 a  z  + 16 a  z  - 
 
               7
       8  6   z          7       3  7       5  7       7  7      8      4  8
>   8 a  z  - -- + 21 a z  + 43 a  z  + 10 a  z  - 11 a  z  - 4 z  - 7 a  z  - 
              a
 
        6  8        9       3  9      5  9      2  10      4  10
>   11 a  z  - 6 a z  - 14 a  z  - 8 a  z  - 3 a  z   - 3 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
8    10     1        3        1        5        3        8        6
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    18  7    16  6    14  6    14  5    12  5    12  4    10  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      10       7      10      10      9      10          5 t      2      2  2
>   ------ + ----- + ----- + ----- + ---- + ---- + 7 t + --- + 3 t  + 5 q  t  + 
     10  3    8  3    8  2    6  2    6      4            2
    q   t    q  t    q  t    q  t    q  t   q  t         q
 
     2  3      4  3    6  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a252
L11a251
L11a251
L11a253
L11a253